LOWER COLORADO RIVER ACCOUNTING SYSTEM (LCRAS) COMPUTER PROGRAM AND DOCUMENTATION

By B.K. von Allworden, Sandra J. Owen-Joyce, John D. Sandoval, and Lee H. Raymond

U.S. GEOLOGICAL SURVEY Open-File Report 91 – 179

Prepared in cooperation with the U.S. BUREAU OF RECLAMATION

U.S. DEPARTMENT OF THE INTERIOR

MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

Copies of this report can be purchased from:

District Chief U.S. Geological Survey 375 South Euclid Avenue Tucson, Arizona 85719-6644 U.S. Geological Survey
Books and Open-File Reports Section
Federal Center, Box 25425
Denver, Colorado 80225

	Page
Abstract	1-1
Introduction	2-1
Algorithms and terminology	3-1
Estimating consumptive use	3-1
Distribution of consumptive use	3-4
Lower Colorado River Accounting System (LCRAS) program	4-1
Main program	5-1
Narrative	5-1
Variable list	5-2
Flow chart	5-4
Program listing	5-10
Subroutine FLOWIN	6-1
Narrative	6-1
Variable list	6-1
Flow chart	6-2
Program listing	6-4
Subroutine TRIBIN	7-1
Narrative	7-1
Variable list	7-1
Flow chart	7-2
Program listing	7-6
Subroutine DUIN	8-1
Narrative	8-1
Variable list	8-2
Flow chart	8-3
Program listing	8-6
······································	

	Page
Subroutine AREAIN	9-1
Narrative	9-1
Variable list	9-1
Flow chart	9-2
Program listing	9-3
Subroutine LUMP	10-1
Narrative	10-1
Variable list	10-1
Flow chart	10-3
Program listing	10-7
Subroutine BC	11-1
Narrative	11-1
Variable list	11-2
Flow chart	11-5
Program listing	11-13
Subroutine BWR	12-1
Narrative	12-1
Variable list	12-1
Flow chart	12-3
Program listing	12-5
Subroutine HV2ML	13-1
Narrative	13-1
Variable list	13-1
Flow chart	13-6
Program listing	13-15
Subroutine HV2DV	14-1
Narrative	14-1
Variable list	14-1
Flow chart	14-3
Program listing	14-4

Subroutine DV2PK	
Narrative	
Variable list	
Flow chart	
Program listing	• • • • • •
Subroutine PK2IP	
Narrative	
Variable list	
Flow chart	
Program listing	
110gram moung	• • • • •
Subroutine IP2ML	
Narrative	
Variable list	
Flow chart	
Program listing	
Subroutine SORT	
Narrative	
Variable list	
Flow chart	
Program listing	
Subroutine TABLE1	
Narrative	• • • • •
Variable list	
Flow chart	
Program listing	• • • • •
Sub-section MADI PA	
Subroutine TABLE2	
Narrative	
Variable list	
Flow chart	
Program listing	

ubroutine TABLE3	·
Variable list	
Flow chart	
	ing
•	
ubroutine TABLE4	·
Variable list	
Flow chart	
Program list	ing
Selected references	
attachments	
A-Q. Exam	ples of:
•	Mine universal data Eta
A.	The primary data file
B.	The flow data file
C.	The tributary-inflow data file
D.	The domestic-use data file
E. F.	The open-water surface areas and evaporation-rates data file
г. G.	An image-processing data file
Н.	A temperature data file
I.	A precipitation data file
J.	The daylight data file
	The title input data files for the output tables
V	The output file of the calculated water-use rates for the
K. L.	vegetation types along the lower Colorado River
L.	vegetation types along the lower Colorado River by reach
	vegetation types along the lower Colorado River

		Page
	A-Q. Examples of—Continued	
	 O. The output file for the Hoover Dam to Morelos Dam reach showing evapotranspiration and consumptive use P. The output file showing domestic use for each diverter within each reach and totals by State Q. The output file showing the water-budget calculation results for each reach	O-1 P-1 Q-1
	ILLUSTRATIONS	
Figure	1. Map showing the Colorado River basin and study area	2-2
	2. Schematic diagram showing reaches along the lower Colorado River	4-2
	3. Diagram showing flow chart of the LCRAS computer program	4-3
Table	TABLE 1. List of variables in common blocks	4-5
•	vii	

CONVERSION FACTORS

Multiply	<u>By</u>	To obtain
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
acre	0.4047	square hectometer (hm²)
acre-foot (acre-ft)	0.001233	cubic hectometer (hm³)

ACRONYMS

American Standard for Computer Information Interchange
U.S. Bureau of Land Management
Bill Williams River subroutine within LCRAS
Central Arizona Project
Cibola Valley Irrigation and Drainage District
Cibola National Wildlife Refuge
Colorado River Indian Reservation
Disk Operating System
Davis Dam to Parker Dam subroutine within LCRAS
Earth Resources Laboratory Applications Software
Geographic Information System
Hoover Dam to Davis Dam subroutine within LCRAS
Hoover Dam to Morelos Dam subroutine within LCRAS
Imperial Dam to Morelos Dam subroutine within LCRAS
Lower Colorado River Accounting System computer program
Northerly International Boundary with Mexico
Palo Verde Irrigation District
Parker Dam to Imperial Dam subroutine within LCRAS
Southerly International Boundary with Mexico
U.S. Bureau of Reclamation
U.S. Geological Survey

LOWER COLORADO RIVER ACCOUNTING SYSTEM (LCRAS) COMPUTER PROGRAM AND DOCUMENTATION

By

B. K. von Allworden Sandra J. Owen-Joyce John D. Sandoval Lee H. Raymond

ABSTRACT

In 1964, the U.S. Supreme Court gave specific legal rights for the annual use of 7.5 million acre-feet of lower Colorado River water to the States of California, Arizona, and Nevada. In addition, under the Rio Grande, Colorado, and Tijuana Treaty of 1944, 1.5 million acre-feet per year of water must be supplied to Mexico. The water supply of the lower Colorado River is overapportioned. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, took a regional approach and developed an accounting system to estimate, distribute, and monitor the annual consumptive use of the water supply.

The Lower Colorado River Accounting System (LCRAS) computer program combines a water-budget estimate of consumptive use by vegetation with estimates of evapotranspiration by diverter from image processing of satellite data. Consumptive use by vegetation along a reach is calculated as the residual in a water budget. Evapotranspiration by diverter is calculated from vegetation types and areas determined from digital-image analysis of satellite data and water-use rates calculated using a modified Blaney-Criddle formula. Prorating consumptive use by vegetation with the estimates of evapotranspiration by diverter produces a good approximation of consumptive use by vegetation for each diverter.

LCRAS runs on a microcomputer and is written in a modular fashion so that modifications can be made easily as new data, new software, and improved techniques become available. LCRAS also can be used as an annual planning tool. The lower Colorado River is divided into four reaches, each beginning and ending at a dam. Each of these four reaches has a separate subroutine that calculates consumptive use by vegetation within that reach by adding all inflow components and subtracting change in reservoir storage and all outflow components except consumptive use. A fifth subroutine allows the river to be treated as a single reach from Hoover Dam to Morelos Dam. Documentation for the LCRAS program describes the modular subroutines and includes data input instructions, narratives, variable lists, flow charts, and code listings of the program.

ABSTRACT 1-1

INTRODUCTION

The Colorado River is a life line to the southwestern United States. Beginning in the Rocky Mountains, the river acquires water from six states, winds through the Grand Canyon and the deserts of Nevada, Arizona, and California, and flows into Mexico (fig. 1). The river supplies water to towns and agricultural areas along its path and also, through pumped diversion to canals, water is exported to Los Angeles, San Diego, Phoenix, and Tucson.

The Colorado River Compact of 1922 apportioned 7.5 million acre-ft/yr of beneficial consumptive use to the lower basin of the Colorado River (Hely, 1969, p. 39). In 1964, a Decree by the U.S. Supreme Court granted legal rights to lower Colorado River water to Arizona, California, and Nevada. Arizona has rights to 2.8 million acre-ft/yr, California to 4.4 million acre-ft/yr, and Nevada to 0.3 million acre-ft/yr (U.S. Supreme Court, 1964). As an outcome of these rulings, the U.S. Bureau of Reclamation and U.S. Geological Survey cooperatively account for the quantities of water released through regulatory structures, diverted, returned, and consumptively used. Under the Decree (U.S. Supreme Court, 1964), these quantities must be stated separately as to each diverter, each point of diversion, and each of the States of Arizona, California, and Nevada. To meet the requirements stated in the Decree, an accounting system for consumptive use was developed.

The Lower Colorado River Accounting System (LCRAS) combines hydrologic water budgets, digital-image analysis of satellite data, and geographic information system (GIS) technologies to quantify consumptive use of water from the lower Colorado River. A regional water-budget approach is the basis for a system by which annual consumptive use of river water can be estimated within the 12,500-square-mile study area. Analysis of satellite data provides vegetation types and associated acreages. The acreages multiplied by water-use rates give estimates of evapotranspiration. The boundaries of each user's area are delineated, digitized, and entered in a data base by using GIS software to obtain the spatial distribution of consumptive use.

LCRAS is a modular computer program designed to process the large quantities of data and to combine the output from water budgets with the output from digital-image analysis. LCRAS was designed for (1) annual accounting but can also be operated as a planning tool and (2) easy modification as new data, software, and improved techniques become available. Within LCRAS, annual consumptive use of lower Colorado River water by vegetation is estimated with water budgets and distributed areally by using estimates of evapotranspiration calculated for each diverter from image analysis and digitized boundaries. LCRAS also accounts for evaporation from open-water surfaces and domestic, municipal, and industrial consumptive use. LCRAS contains

INTRODUCTION 2-1

Figure 1.--The Colorado River basin and study area (shaded).

INTRODUCTION 2-2

a single-reach option and a four-reach option that are used to estimate and distribute consumptive use to water users in the 320-mile reach between Hoover Dam and Morelos Dam. The single-reach option provides data for the entire flood-plain area. The four-reach option provides data for four subreaches. Water-data inputs to the program are selected to reflect the different hydrologic conditions in each individual subreach of the lower Colorado River.

The purpose of this report is to document the LCRAS computer program. This documentation includes the following:

- 1. A description of the general algorithms used to calculate consumptive use by vegetation and evapotranspiration.
- 2. A description of the input data format.
- 3. A narrative, variable list, flow chart, and program listing for each subroutine.
- 4. Attachments that show examples of input and output data files.

INTRODUCTION 2-3

PAGE 3-1

ALGORITHMS AND TERMINOLOGY

Estimating Consumptive Use

The Lower Colorado River Accounting System uses a basic water-accounting system (water budget), which is similar to a financial balance sheet. Water that enters the system must be stored in the system or released from the system. The water budget for a given reach is expressed as

$$IF = OF_t + \Delta S_{rt} \tag{1}$$

where

1

IF = total inflow, in acre-feet, to the reach:

 OF_t = total outflow, in acre-feet, from the reach; and

 ΔS_r = change in reservoir storage, in acre-feet, in the reach.

Consumptive use of river water is an outflow component of the water budget that can be solved for by rewriting equation 1 as

$$CU_{\sigma} = IF - OF - \Delta S_{\sigma} \tag{2}$$

where

 CU_{cr} = consumptive use, in acre-feet, of Colorado River water and

OF = total outflow other than consumptive use, in acre-feet, from the reach.

Inflow to the reach includes flow in the river below the upstream dam, precipitation that falls on the area of vegetation and open-water surfaces, and tributary inflow in the reach. Inflow can be expressed as

$$IF = Q_{\mu\nu} + P + IF_{\mu\nu},\tag{3}$$

where

 Q_{ms} = quantity, in acre-feet, of flow in the river below the upstream dam of the reach (read in from data file FLOW.DAT);

P = precipitation, in acre-feet, that falls on the area of vegetation and open-water surfaces in the reach; and

 IF_{tr} = tributary inflow, in acre-feet, in the reach (read in from data file TRIB.DAT).

Precipitation as an inflow component is calculated as

$$P = (p_{a}/12)(A_{v} + A_{w}), \tag{4}$$

where

p_a = annual precipitation, in inches, at the weather station selected to represent the reach (annual precipitation is calculated as the sum of the monthly precipitation values in the weather-station precipitation data files, such as PARKER.PPT);

A, = net vegetated area, in acres, (excluding multiple cropping) in the reach (calculated and stored as NETACR by reach); and

A_w = the area, in acres, of open-water surfaces in a reach of the river (calculated from single-image classifications of the individual reaches of the river and read in from data file AREA.DAT).

Outflow other than consumptive use from a reach includes flow in the river below the downstream dam and water exported out of the study area (fig. 1) and can be expressed as

$$OF = Q_{ds} + Q_{ex}, (5)$$

where

 Q_{ds} = quantity, in acre-feet, of flow in the river below the downstream dam and

 Q_{ex} = quantity, in acre-feet, of water diverted from the river and exported out of the study area.

Consumptive use of Colorado River water must be broken down into individual components because not all the consumptive use is charged to users (diverters). These components include consumptive use by vegetation (crops and phreatophytes), evaporation from open-water surfaces, and domestic, municipal, and industrial use. Consumptive use of river water can be expressed as

$$CU_{\sigma} = CU_{\bullet} + E + CU_{\bullet} \tag{6}$$

where

CU, = consumptive use by vegetation, in acre-feet, of Colorado River water,

E = evaporation, in acre-feet, from the open-water surfaces in the reach;

 CU_d = domestic, municipal, and industrial consumptive use, in acre-feet, in the reach (calculated in subroutine DUIN using data file DU.DAT).

Evaporation is the sum of water lost from the open-water surfaces that consist of the river, reservoirs, lakes, marshes, and flooded areas. Evaporation can be expressed as

$$E = A_{w} \cdot e, \tag{7}$$

where

e = evaporation rate, in feet/year, for that reach of the river (read in from data file AREA.DAT).

Consumptive use by vegetation of Colorado River water was calculated with a water budget derived from equation 2 by replacement of the components with those defined in equations 3, 5, and 6 and can be expressed as

$$CU_{v} = Q_{ut} + P + IF_{tr} - Q_{dt} - Q_{cx} - CU_{d} - E - \Delta S_{r}.$$
 (8)

Equation 8 can be used to calculate consumptive use by vegetation for the entire river or individual sections (reaches) of the river. Every component in equation 8 can be measured or calculated with the exception of consumptive use by vegetation.

Distribution of Consumptive Use

Consumptive use by vegetation can be approximated by estimating evapotranspiration; this relation provides a means to distribute consumptive use by vegetation among water users but not open-water evaporation or domestic, municipal, and industrial use. Evapotranspiration is the loss of water from a land area through transpiration by vegetation and evaporation from the soil surface under the vegetation and can be expressed as

$$ET = A \cdot Wu, \tag{9}$$

where

ET = estimated evapotranspiration, in acre-feet;
A = the area, in acres, of each vegetation type; and
Wu = water-use rate, in feet/year, for that vegetation type.

Areas for each vegetation type by diverter are determined from digital-image analysis of satellite data. Water-use rates for crops are calculated using a modification of the formula developed by Blaney and Criddle (1950). The modified formula is expressed as

$$U = \Sigma(k_{\perp}t_{\perp}d_{\perp}/100) - p_{\perp}/12, \tag{10}$$

where

U = vegetation water-use rate, in acre-feet/acre/year, during the growth of the vegetation (substitutes for Wu in equation 9);

 k_m = monthly empirical water-use coefficient that is dependent on the type and location of the vegetation;

 t_m = mean monthly temperature, in degrees Fahrenheit;

 $d_{\mathbf{m}}$ = monthly percentage of total daylight hours of the year, and

 p_{m} = monthly precipitation, in inches.

Phreatophyte water-use rates were calculated for the density types (sparse, medium, and dense) classified by image analysis by using another modification of the formula developed by Blaney and Criddle (1950), which can be expressed as

$$U = \Sigma (k_{\perp} t_{\perp} d_{\perp} / 100). \tag{11}$$

The same mean monthly temperatures used for estimating water-use rates for crops for the different reaches were used to estimate water-use rates for phreatophytes. Monthly precipitation was not included in equation 11 to estimate water-use rates for phreatophytes because phreatophytes are deep-rooted plants that use ground water in the alluvial aquifer.

For each diverter, the number of acres of each crop type is multiplied by the respective water-use rate to obtain an estimate of evapotranspiration by that crop. Total crop evapotranspiration by diverter is obtained by summing the individual crop evapotranspiration. Evapotranspiration by phreatophytes was summed separately by State to determine the proportion of evapotranspiration by crops for the reach. Total evapotranspiration by vegetation is then summed for each reach. To distribute consumptive use by vegetation to diverters, the percentage of evapotranspiration calculated for each diverter was applied to the estimate of consumptive use by vegetation calculated for the reach with equation 8.

Flow in the Bill Williams River is measured below Alamo Dam 36 mi upstream from Lake Havasu on the Colorado River. A water budget is used to estimate the amount of water that reaches the Colorado River. Inflow from the Bill Williams River is a component in the water budget for the Davis Dam to Parker Dam reach, which can be expressed as

$$Q_{bur} = Q_{ad} + P + IF_{tr} - ET - E, \tag{12}$$

where

 Q_{bur} = flow, in acre-feet, in the Bill Williams River that enters the Colorado River and

 Q_{ad} = flow, in acre-feet, in the Bill Williams River below Alamo Dam (read in from data file FLOW.DAT).

LOWER COLORADO RIVER ACCOUNTING SYSTEM (LCRAS) PROGRAM

The accounting system developed for the lower Colorado River is complex because it combines the use of two technologies (water budget and remote sensing), which generate large amounts of data from a large study area. To help manage the data, this area is divided into four reaches. Each reach begins and ends at a dam to form independent hydrologic models that can be analyzed separately (fig. 2).

The LCRAS Program is divided into two parts or processors (fig. 3). The first part uses the water budget to calculate consumptive use by vegetation along a reach. The second part uses vegetation types and areas and water-use rates to estimate evapotranspiration for each diverter. In order to reduce the effect of any error associated with the water-use rates, evapotranspiration by diverter is converted to a percentage of total evapotranspiration. These percentages are multiplied by the total consumptive use by vegetation for the reach to compute consumptive use by vegetation for each diverter.

The format for the input data was a major concern when designing the LCRAS program. The input data for the water budget will be changed each year; therefore, the input files must be both easy to update and meaningful to the user independent of the program. This was done by allowing input to be read from fully annotated ASCII files (attachments A-J). Each subreach defined in the primary data file (attachment A) has a set of data files associated with it. The first data file that LCRAS needs for each subroutine is an image-classification data file (attachment F), which is the output data from image-processing software. Two files contain weather-station data in the subreach—a mean monthly temperature data file (attachment G) and a monthly precipitation data file (attachment H). Each year these files must be updated with current data from the National Climatic Data Center. The actual names of these data files are read from the primary data file, but they must have names that conform with the computer-operating system.

Satellite data for 1984 were processed using ELAS¹ to classify crop and phreatophyte-density types and to calculate areas. The output data file from the image processing must be formatted for input into LCRAS. A separate Fortran program reads the ELAS output data file and produces the input data file for use by LCRAS. This allows any method of vegetation classification and area measurement to be used. The format required for the image-processing output data file is shown in attachment F.

Another important concern in the development of the computer program was to allow new or updated calculation methods to be inserted easily into the program. To do this, a modular program design is used. Each type of input, such as gaged flows or domestic use, is read from

LCRAS PROGRAM 4-1

¹Use of brand name in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.

Figure 2.--Reaches along the lower Colorado River.

LCRAS LOWER COLORADO RIVER ACCOUNTING SYSTEM

WATER BUDGET

Consumptive use

Compile data collected from gaging stations, weather stations, utility records, population records, and other sources, and load to input files.

Calculate consumptive use by vegetation as

$$CU = Qi + P + Tr - Qo - Ex - Ev - Du - \Delta S$$
,

where

CU = consumptive use by

vegetation,

Oi = river inflow.

 \tilde{P} = precipitation,

Tr = tributary inflow,

Qo = river outflow,

Ex =exported water,

Ev = open-water evaporation,

Du =domestic, municipal, and

industrial use, and

 ΔS = change in storage.

REMOTE SENSING & GIS

Evapotranspiration

Image processing of satellite data determines vegetation types and acreages.

Digitize diverter boundaries by using geographic information system (GIS) software.

Overlay diverter boundaries on classified images and sum vegetation areas by type for each diverter.

Calculate water-use rates by vegetation by using the Blaney-Criddle formula.

Estimate evapotranspiration by vegetation types and sum evapotranspiration by crops for each diverter.

Calculate evapotranspiration by diverter as a percentage of total evapotranspiration.

Calculate consumptive use by diverter by using percentages of evapotranspiration by diverter multiplied by consumptive use by vegetation from the water budget.

Figure 3.--Flow chart of LCRAS computer program.

LCRAS PROGRAM 4-3

a single input file by a single subroutine. Each reach also has a unique subroutine to calculate consumptive use by vegetation using equation 6. For the satellite data, three subroutines are common for all reaches. These subroutines read the data from the data file, sort the data, estimate evapotranspiration, and apportion consumptive use by vegetation to each diverter along the reach. Three subroutines produce output table files: (1) a table listing the water-use rates for each vegetation type per month by reach (attachment L), (2) a table for each reach listing the area of each crop by diverter (attachment M), and (3) a table for each reach listing the calculated evapotranspiration, the percentage of evapotranspiration used by each diverter, and the calculated consumptive use by vegetation for each diverter in each State as well as State totals (attachment O).

The main program is used primarily as a vehicle to call the subroutines. A small amount of overhead, such as variable initialization, defining common blocks, and reading the general data file, also is performed in the main program. No parameters are passed directly to any of the subroutines; instead, all shared variables are stored in the common blocks. The variables used in the program are shown in table 1.

LCRAS PROGRAM 4-4

Table 1.-- List of variables in common blocks

Name	Common block	Туре	Subroutines involved	Action
AREAS	INDATA	INTEGER*4	AREAIN BWR HV2ML HV2DV DV2PK PK2IP	Read from file Used to calculate BILOUT Used to calculate FDTOT Used to calculate RCHTS Used to calculate RCHTS Used to calculate RCHTS
BILOUT	RDAT4	REAL*8	MAIN BWR HV2ML DV2PK	Used to set RCHTS Calculated Used to calculate FDTOT Used to calculate RCHTS
CORVEG	COUNTS	INTEGER*4	LUMP BWR TABLE1	Read from file Used to calculate BILOUT Used to calculate NETVEG
CRPCOF	WDATA	INTEGER*4	ВС	Read from file
CRPNAM	WDATA	CHARACTER*20	ВС	Read from file
DATFIL	IDATA	CHARACTER*50	AREAIN FLOWIN TRIBIN BC DUIN MAIN	Used to open file Read from file
DIVNAM	VEGDAT	CHARACTER*40	LUMP SORT TABLE1 TABLE2 TABLE4	Read from file Sorts character array Written to a file Written to a file Written to a file
DTOTAL	PHRDAT	INTEGER*4	BC BWR SORT TABLE2 TABLE4	Calculated Used to calculate BILOUT Sorts by DIVNAM Written to a file Written to a file

Table 1.-- List of variables in common blocks -- Continued

Name	Common block	Туре	Subroutines involved	Action
DUS	INDATA	INTEGER*4	DUIN HV2ML HV2DV DV2PK PK2IP	Calculated Used to calculate FDTOT Used to calculate RCHTS Used to calculate RCHTS Used to calculate RCHTS
ЕТОТАТ	BLCR1	INTEGER*4	BC BWR SORT TABLE2 TABLE4	Calculated Used to calculate BILOUT Sorts by DIVNAM Written to a file Written to a file
EVAPS	INDATA	INTEGER*4	AREAIN BWR HV2ML HV2DV DV2PK	Calculated Used to calculate BILOUT Used to calculate FDTOT Used to calculate RCHTS Used to calculate RCHTS
FDNUM	SUMMRY	INTEGER*4	MAIN	Set to zero
FDETOT FLOWS	SUMMRY INDATA	INTEGER*4 INTEGER*4	MAIN FLOWIN BWR HV2ML HV2DV DV2PK PK2IP	None Read from file Used to calculate BILOUT Used to calculate FDTOT Used to calculate RCHTS Used to calculate RCHTS Used to calculate RCHTS
INFILE	LUMP1	CHARACTER*50	MAIN LUMP TABLE3	Read from file Used to open file Written to a file
LOCLAT	BLCR1	INTEGER*4	MAIN BC	Read from file Used in conditional
MTOTAL	PHRDAT	INTEGER*4	BC BWR SORT TABLE2 TABLE4	Calculated Used to calculate BILOUT Sorts by DIVNAM Written to a file Written to a file

Table 1.-- List of variables in common blocks -- Continued

Name	Common block	Туре	Subroutines involved	Action
MWUR	WRATES	INTEGER*4	BC TABLE3	Calculated Written to a file
NUMCRP	VDATA	INTEGER*4	ВС	Set to number of crops
NUMDIV	VEGDAT	INTEGER*4	LUMP BC SORT	Set to number of diverters Used in calculation Modifies for double listings
NUMMR	COUNTS	INTEGER*4	MAIN	Read from file
NUMSUB	COUNTS	INTEGER*4	BC LUMP BWR TABLE3	Set in DO LOOP Set in DO LOOP Used in DO LOOP Set in DO LOOP
NUMVEG	VEGDAT	INTEGER*4	LUMP BC BWR TABLE1 TABLE3	Read from file Used in DO LOOP Used in DO LOOP Used in DO LOOP Used in DO LOOP
PFILE	SDATA	CHARACTER*50	MAIN BC	Read from file Used to open file
PPTS	PPT1	INTEGER*4	BC BWR HV2DV DV2PK PK2IP	Calculated Used to calculate BILOUT Used to calculate RCHTS Used to calculate RCHTS Used to calculate RCHTS
PRECIP	PPT1	REAL*8	MAIN HV2ML	Reset after call to BC Used to calculate FDTOT
RCHNUM	COUNTS	INTEGER*4	MAIN BC TABLE2 TABLE4	Set in DO LOOP Used in DO LOOP Used in DO LOOP Used in DO LOOP

Table 1 .-- List of variables in common blocks -- Continued

Name	Common block	Туре	Subroutines involved	Action
RCHTS	INDATA	REAL*8	MAIN HV2DV DV2PK PK2IP TABLE2 TABLE4	Set only value for BWR Calculated Calculated Calculated Used to calculate CO Used to calculate CO
STOTAL	PHRDAT	INTEGER*4	BC BWR SORT TABLE2 TABLE4	Calculated Used to calculate BILOUT Sorts by DIVNAM Written to a file Written to a file
SUBNUM	COUNTS	INTEGER*4	MAIN BC LUMP TABLE1 TABLE3	Read from file Used in DO LOOP Used in DO LOOP Used in DO LOOP Used in DO LOOP
TFILE	SDATA	CHARACTER*50	MAIN BC TABLE3	Read from file Used to open file Used in conditional
тот	VEGDAT	INTEGER*4	LUMP SORT	Set to number of diverters Modifies for double listings
TOTALS	вотн4	INTEGER*4	MAIN SORT TABLE1	Set to zero Calculated Used for summation
TRIBS	INDATA	INTEGER*4	TRIBIN BWR HV2ML HV2DV DV2PK PK2IP	Read from file Used to calculate BILOUT Used to calculate FDTOT Used to calculate RCHTS Used to calculate RCHTS Used to calculate RCHTS

Table 1.-- List of variables in common blocks -- Continued

Name	Common block	Туре	Subroutines involved	Action
VEGNAM	VEGDAT	CHARACTER*20	LUMP BC TABLE1 TABLE3	Read from file Used in conditional Written to a file Written to a file
WUR	WRATES	INTEGER*4	BC TABLE3	Calculated Written to a file
YEAR	BLCR1	INTEGER*4	MAIN BC	Read from file Used in conditional

MAIN PROGRAM

Narrative

The main program for the LCRAS system is a 'program shell' that calls the other modules. Some minor initialization is done, such as initializing the variables in the common blocks. The principal function of the main program is to read the data from the primary input data file. This data file contains the file names for all the other input data files, the file names for the output tables, the calendar year for which the data is to be compiled, the number and names of the reaches to be run, and the number and data file names for the subreaches for each reach. The format for the primary data file is shown in attachment A.

Another function of the main program is to open any data files that are used by more than one subroutine. The main program opens and closes two output data files that are written to by several subroutines. These are the domestic-use table and the water-use rate table. Several data files that contain title information for output files are opened by the main program. Although some subroutines create new files for each reach, the title information for all the tables is stored in one file that must remain open continuously.

The main loop in the program, which cycles through each subroutine, is in the main program. The data for each reach are read from the general data file and the appropriate subroutines are executed. When the first reach is complete, which includes producing or adding to the output table files, the data for the second reach are read and processed. This algorithm allows most of the variables to be reused for each reach.

The last function of the main program is to close any open files, including input and output files. Once the files are closed, the main program returns control back to the operating system.

MAIN SUBROUTINE 5-1

Variable List

Name	Common	Description		
BILOUT	[RDAT4]	Discharge from the Bill Williams River into the Colorado River between Davis Dam and Parker Dam.		
DATFIL(10)	[IDATA]	The array DATFIL contains the names of the input data files.		
These are:				
	DATFIL(1) DATFIL(2) DATFIL(3) DATFIL(4) DATFIL(5) DATFIL(6) DATFIL(7) DATFIL(8) DATFIL(9) DATFIL(10)	Flow Data file. Tributary-Inflow Data file. Domestic-Use Data file. Open-Water Surface Area and Evaporation-Rates Data file. Crop-Coefficient Data file. Daylight Data file. Information for Table 1. Information for Table 2. Information for Table 3. Information for Domestic-Use Tables.		
FDNUM	[SUMMRY]	Total number of diverters in the system.		
FILNAM		Name of the domestic-use output file.		
INFILE(10)	[LUMP1]	Array containing names of the subreach image- classification data files within a single reach.		
LOCLAT(10)	[BLCR1]	Array containing the latitude for each subreach within a single reach.		
NUMMR	[COUNTS]	Number of major reaches contained in the model are stored in this variable.		
PFILE(10)	[SDATA]	Array containing the names of the precipitation data files for each subreach within a single reach.		
PRECIP(4)	[PPT1]	Precipitation for each area in each subreach.		

Name	Common	Description
RCHNAM		Name of the reach that is compared to the subroutine names for execution, must match a subroutine name exactly.
RCHNUM	[COUNTS]	Number of the current subreach being processed.
RCHTS(4)	[INDATA]	Consumptive use by vegetation for each subreach.
SUBNUM		Number of subreaches within a single reach.
ТЕМР		Temporary variable to save the RCHTS value while BWR subroutine is called.
TFILE(10)	[SDATA]	Array containing the names of the temperature data files for each subreach within a single reach.
TITLE		String variable is used to read the title from the data file and write it to the output file.
TOTALS(100,25)	[BOTH4]	Array containing the total area of each crop for each diverter along a single reach.
WUNAME		Name of the output file for the water-use table.
YEAR	[BLCR1]	Year for the data.
YLINES		Number of lines in a table title.

Flow chart

Lower Colorado River Accounting System Main Program

Lower Colorado River Accounting System Main Program — Continued

Read the title line for table 3

Write the title line to the output file for table $\boldsymbol{3}$

Repeat until title is complete

Write blank line for table 3

Write blank line for table 3

Write heading of the months for table 3

Read the inflow data from the inflow file

Read the tributory data from the tributary data file

Read in and calculate the domestic—use data from the domestic—use file

Read the open-water surface areas and the evaporation rates

Read the current year to be processed

Read the number of reaches to be processed

Set I equal to one

Set J equal to one

Continued on next page

Lower Colorado River Accounting System Main Program — Continued

Lower Colorado River Accounting System Main Program — Continued

Lower Colorado River Accounting System

Main Program — Continued

Calculate consumptive use by diverter from Parker Dam to Imperial Dam

Make comparison to determine if variable RCHNAM equals 'IP2ML'

Calculate consumptive use by diverter from Imperial Dam to Morelos Dam

Error message if there is no match

End of program due to error

Produce a table of areas of each crop by diverter for each reach

Produce a table of evapotronspiration, percentage, and consumptive use for Arizona, California, Nevada, and Federal Lands for each reach

Produce a table of water—use rates for each vegetation type for each reach

Repeat until all reaches are processed

If all four reaches have been called, call subroutine 'HV2ML'

Calculate consumptive use by diverter from Hoover Dam to Morelas Dam

Continued on next page

Lower Colorado River Accounting System Main Program — Continued

Close general data file

Close domestic-use output file

Close file containing the titles and output file names for table 1

Close file containing the titles and output file names for table ${\bf 2}$

Close file containing the titles and output file nomes for toble $\boldsymbol{3}$

Close the output file for table 3

End of program

Program Listing

```
C
      MAIN PROGRAM
      CHARACTER*100 TITLE(10)
      CHARACTER*40
                                         FDNAME(250),
                     DIVNAM(100),
                                                               RCHNAM
      CHARACTER*20
                      VEGNAM(50),
                                         CRPNAM (50)
      CHARACTER*22
                      INFILE(10),
                                         DATFIL(15),
                                                               TFILE (10),
                      WUNAME,
                                          PFILE(10),
                                                               FILENAM
                      NUMDIV(10),
      INTEGER*4
                                         NUMSUB,
                                                               NUMMR,
                      SUBNUM,
                                          LOCLAT(10),
                                                               NUMVEG,
                      YEAR,
                                         RCHNUM,
                                                               YLINES,
                      TOT,
                                         NUMCRP,
                                                               FDNUM
                      TOTALS (100, 25),
      INTEGER*4
                                         MTOTAL (50)
                                                               CORVEG(10),
                      DTOTAL (50),
                                          ETOTAL (100),
                                                               STOTAL (50),
                      FDETOT (250)
                      FLOWS (30),
      REAL*8
                                         TRIBS (40),
                                                               AREAS (20),
                      DUS (20),
                                         EVAPS (20),
                                                               BILOUT,
                                         WUR (5,25),
                                                              MWUR (5, 25, 12),
                      PPTS.
                      PRECIP(5),
                                         RCHTS(5),
                                                              FDACR (5),
                      CRPCOF (50,12)
C
      COMMON / VEGDAT / DIVNAM, VEGNAM, NUMVEG, NUMDIV, TOT
      COMMON / PHRDAT / DTOTAL, MTOTAL, STOTAL COMMON / INDATA / FLOWS, TRIBS, AREAS,
                                                     EVAPS,
                                                             DUS,
                                                                     RCHTS
      COMMON / COUNTS / NUMSUB, NUMMR, SUBNUM,
                                                     RCHNUM, CORVEG
      COMMON / WRATES / MWUR,
                                   WUR
      COMMON / BLCR1 /
                          LOCLAT, ETOTAL, YEAR
                          INFILE
      COMMON / LUMP1 /
      COMMON / SDATA /
                                   TFILE
                          PFILE,
      COMMON / BOTH4 /
                          TOTALS
      COMMON / IDATA /
                          DATFIL
      COMMON / PPT1 /
                          PPTS,
                                   PRECIP
      COMMON / WDATA /
                          CRPCOF, CRPNAM
      COMMON / VDATA /
                          NUMCRP
      COMMON / RDAT4 /
                          BILOUT
      COMMON / SUMMRY / FDNAME, FDETOT, FDNUM
      COMMON / SUM2 /
                          FDACR
      Set the Bill Williams River number to zero (0) and the full
      river acreage to zero (0).
C
      BILOUT = 0
      FDNUM = 0
      Print the title to the screen and ask the user for the name of
С
      the primary data file.
    WRITE (*,1)
1 FORMAT (////////////,10X,'LOWER COLORADO RIVER'
               ' ACCOUNTING SYSTEM',///)
              (*,2)
      WRITE
    2 FORMAT (2X,'What is the profile data file name ?')
READ (*,'(A22)') FILENAM
              (*,3)
      WRITE
    3 FORMAT (///,2X,'Please Wait - Processing')
      Open the primary data file to read data and the names of other
      data files required.
```

```
C
       OPEN (60, FILE=FILENAM, STATUS='OLD', ERR=203)
C
C
       Read in the names of the input files that contain data on flow, tributary
       inflow, domestic use, open-water surface area, vegetation coefficients,
C
       daylight, and the titles for the output tables.
Č
       DO 5 K = 1, 10
READ (60, '(A22)', ERR=210) DATFIL(K)
    5 CONTINUE
C
C
       Read in the output file name for the domestic-use table.
C
       READ (60, '(A22)', ERR=210) FILENAM
C
C
       Open the files that contain the titles and the output file names
       for each output table.
C
       OPEN (62, FILE=DATFIL(8), STATUS='OLD', ERR=201)
       OPEN (58, FILE=FILENAM, ERR=200)
       OPEN (63, FILE=DATFIL(9), STATUS='OLD', ERR=202)
C
C
       Read the number of lines in the title and output file name for
C
       the water-use table, open the output file, and write the title.
       READ (63, '(12, A22)', ERR=212) YLINES, WUNAME
       OPEN (65, FILE=WUNAME, ERR=204)
DO 45 I=1, YLINES
         READ (63, '(A100)', ERR=214) TITLE(I)
         WRITE (65, '(3X, A100)', ERR=220) TITLE(I)
    45 CONTINUE
       WRITE (65,115,ERR=220)
       WRITE (65,115,ERR=220)
  115 FORMAT (2X)
WRITE (65,35,ERR=220)
   35 FORMAT ('Vegetation type',4X,' Jan',2X,' Feb',2X,' Mar',2X,

* 'Apr',2X,' May',2X,' Jun',2X,' Jul',2X,' Aug',2X,

* 'Sep',2X,' Oct',2X,' Nov',2X,' Dec',3X,'Total')
C
       Call the subroutines that read and store the input data.
       CALL FLOWIN
       CALL TRIBIN
       CALL DUIN
       CALL AREAIN
Č
       Read the year and the number of reaches to be processed.
              (60,'(14)',ERR=230) YEAR
(60,'(12)',ERR=231) NUMMR
       READ
       READ
C
C
       Loop through each reach, calculating the acreage and consumptive
C
       use for each diverter along the reach.
C
       DO 10 RCHNUM=1, NUMMR
C
C
         Set the acreage of each reach per diverter to zero (0).
C
         DO 100 I=1,100
            DO 110 J=1,25
              TOTALS(I,J) = 0
  110
            CONTINUE
  100
         CONTINUE
```

```
C
C
        Read the subreach file name, latitude, temperature file
C
        name, and precipitation file name associated with each
С
        subreach file.
C
        READ (60,'(A40)',ERR=232) RCHNAM WRITE (*,66) RCHNAM
        FORMAT (//, 2X, 'Processing Reach - ', A40)
   66
С
C
        If reach DV2PK is to be calculated, then subroutine BWR is run
        first to calculate BILOUT.
С
        IF (RCHNAM .EQ. 'DV2PK') THEN
           WRITE (*,61)
   61
           FORMAT (//,4X,'Processing BWR for DV2PK')
000000
           Read the number of subreaches in the reach and loop through
           each one, reading and storing the image-processing data file name,
           latitude of the subreach, temperature data file name, and
           precipitation data file name.
                 (60,'(12)', ERR=233) SUBNUM
           DO 57 J= 1, SUBNUM
                   (60,'(A22)',ERR=240) INFILE(J)
(60,'(I2)',ERR=241) LOCLAT(J)
(60,'(A22)',ERR=242) TFILE(J)
             READ
             READ
             READ
                   (60, '(A22)', ERR=243) PFILE(J)
             READ
   57
           CONTINUE
C
00000
           Call subroutine LUMP to consolidate the image-processing data
           file and call subroutine BC to apply the Blaney-Criddle
           formula to the vegetation data. Save the precipitation
           value for DV2PK.
           CALL LUMP
           TEMP = PRECIP(RCHNUM)
           CALL BC
           PRECIP(RCHNUM) = TEMP
           CALL BWR
           RCHTS (RCHNUM) = BILOUT
           CALL TABLE1
           CALL TABLE4
           CALL TABLE3
           WRITE (*,74) BILOUT
           FORMAT (6X, 'Outflow from Bill Williams River is ',F15.0)
   74
           WRITE (*,73)
   73
           FORMAT (/,4X,'Continue with processing DV2PK')
C
           Reset the acreage in each reach by diverter to zero (0).
С
           DO 112 I=1,100
             DO 111 J=1,25
               TOTALS(I,J) = 0
             CONTINUE
  112
           CONTINUE
         END IF
CCCCC
        Read the number of subreaches in the reach and loop through
         each one, reading and storing the image-processing data file name,
         latitude of the subreach, temperature data file name, and
        precipitation data file name.
C
        READ (60, '(12)', ERR=233) SUBNUM
```

```
DO 50 J= 1, SUBNUM
            READ (60, '(A22)', ERR=240) INFILE(J)
                  (60, '(12)', ERR=240) INFILE (J)
(60, '(12)', ERR=241) LOCLAT (J)
(60, '(A22)', ERR=242) TFILE (J)
(60, '(A22)', ERR=243) PFILE (J)
            READ
            READ
            READ
   50
         CONTINUE
00000
         Call subroutine LUMP to consolidate the image-processing data
         file and call subroutine BC to apply the Blaney-Criddle
         formula to the vegetation data.
         CALL LUMP
         CALL BC
         WRITE (*,51)
FORMAT (8X,'Applying Water Budget Formula')
CCCC
         Call the appropriate water-budget subroutine for the reach
         that is being calculated. If the reach name does not match,
         an error is produced.
C
         IF (RCHNAM .EQ. 'HV2DV') CALL HV2DV(*72)
IF (RCHNAM .EQ. 'DV2PK') CALL DV2PK(*72)
IF (RCHNAM .EQ. 'PK2IP') CALL PK2IP(*72)
         IF (RCHNAM .EQ. 'IP2ML') CALL IP2ML(*72)
  79
         WRITE (*,80) RCHNAM
         FORMAT (//,20X,'ERROR - ',A5,' CHOSEN NOT FOUND ')
  80
         STOP
C
  72
         CALL TABLE1
         CALL TABLE2
         CALL TABLE3
       CONTINUE
C
C
       If all four reaches have been calculated, call the water-
C
       budget subroutine for the Hoover Dam to Morelos Dam reach
       of the lower Colorado River.
C
       IF (NUMMR .EQ. 4) CALL HV2ML
C
       Close all the open files.
       CLOSE (60)
CLOSE (58)
       CLOSE (62)
       CLOSE (63)
       CLOSE (65)
WRITE (*,49)
    49 FORMAT (//,2X,'PROCESSING COMPLETE',///)
       RETURN
C
С
       Error messages.
  200 WRITE (*,209) DATFIL(6)
       STOP
  201 WRITE (*,209) DATFIL(7)
       STOP
  202 WRITE (*,209) DATFIL(8)
       STOP
  203 WRITE (*,209) 'FILE.DAT'
       STOP
  204 WRITE (*,209) WUNAME
       STOP
```

```
209 FORMAT (//, 20X, 'ERROR - Opening ', A22)
  210 WRITE (*,211) K
  211 FORMAT (//,20X,'ERROR - Reading FILE.DAT, DATFIL(',12,')')
      STOP
  212 WRITE (*,213) DATFIL(9)
213 FORMAT (//,20X,'ERROR - Reading ',A22,', YLINES and WUNAME')
      STOP
  214 WRITE (*,215) DATFIL(9), I
  215 FORMAT (//,20X,'ERROR - Reading ',A22,', title string',I2)
      STOP
  220 WRITE (*,221) WUNAME
  221 FORMAT (//, 20X, 'ERROR - Writing to ', A22)
      STOP
  230 WRITE (*,239) 'YEAR'
      STOP
  231 WRITE (*,239) 'NUMMR'
      STOP
  232 WRITE (*,239) 'RCHNAM'
      STOP
  233 WRITE (*,239) 'SUBNUM'
      STOP
  239 FORMAT (//,20X,'ERROR - Reading FILE.DAT - ',A10)
  240 WRITE (*,249) 'INFILE',J
      STOP
  241 WRITE (*,249) 'LOCLAT',J
      STOP
  242 WRITE (*,249) 'TFILE',J
      STOP
  243 WRITE (*,249) 'PFILE',J
      STOP
  249 FORMAT (//,20X,'ERROR-Reading',A22,' #',I2)
C
      END
```

SUBROUTINE FLOWIN

Narrative

Subroutine FLOWIN reads the annual flow measured at gaging stations along the lower Colorado River from Hoover Dam to the SIB. The quantities are in acre-feet. The data file is designed to be human readable; much of the information is skipped and only the actual data values are stored as variables. The format for the data is shown in attachment B. Note that the data are separated into four groups, each of which corresponds to one of the reaches along the river. Also note that the flow quantities in the data files are the only items that should be changed unless there is a modification in the way the consumptive-use estimates are calculated.

Variable List

Name	Common	Description
DATFIL(1)	[IDATA]	ASCII input data file that consists of the annual- flow quantities measured at gaging stations along the lower Colorado River.
FLOWS(20)	[INDATA]	Array that contains the annual-flow quantities measured at gaging stations along the lower Colorado River.

Flow chart

Lower Colorado River Accounting System Subroutine FLOWN

Begin subroutine FLOWN

Open the input file containing the inflow data

Read the first eight lines in the data

Set I equal to zero

Increment I

Read Inflow values 1-2

Repeat until 1 > 2

Read two blank lines in the data file

Increment I

Read inflow values 3-7

Repeat until I > 7

Read two blank lines in the data file

Increment I

Lower Colorado River Accounting System Subroutine FLOWN — Continued

Read inflow values 8-10

Repeat until 1 > 10

Read two blank lines in the data file

Increment I

Read inflow values 11-18

Repeat until 1 > 18

Close inflow data file

Return to main program

Program Listing

```
SUBROUTINE FLOWIN
С
С
      This subroutine reads the inflow data from the DATFIL(1)
C
      file and stores the values in the variable FLOW(x).
      CHARACTER*22 DATFIL(15)
                      TRIBS(40), DUS(20),
RCHTS(5), EVAPS(20)
      REAL*8
                                            FLOWS (30), AREAS (20),
С
      COMMON / INDATA / FLOWS, TRIBS, AREAS, EVAPS, DUS, RCHTS COMMON / IDATA / DATFIL
C
      Open the inflow data file for input.
С
      OPEN (16,FILE=DATFIL(1), STATUS='OLD', ERR=200)
С
      Read and store the inflow data.
      READ (16,'(/////)',ERR=210)
      DO 10 I=1,2
           READ (16, '(40X, F13.0)', ERR=210) FLOWS(I)
   10 CONTINUE
      READ (16,'(/)',ERR=210)
      DO 20 I=3,7
           READ (16, '(40X, F13.0)', ERR=210) FLOWS(I)
   20 CONTINUE
      READ (16,'(/)',ERR=210)
DO 30 I=8,10
           READ (16, '(40X, F13.0)', ERR=210) FLOWS(I)
   30 CONTINUE
      READ (16,'(/)',ERR=210)
DO 40 I=11,24
           READ (16, '(40X, F13.0)', ERR=210) FLOWS(I)
   40 CONTINUE
C
      Close DATFIL(1) and return.
      CLOSE (16)
      RETURN
C
      Error messages.
  200 WRITE (*,201) DATFIL(1)
  201 FORMAT (//,20X,'ERROR - Opening ',A22)
      STOP
  210 WRITE (*,211) DATFIL(1)
211 FORMAT (//,20X,'ERROR - Reading ',A22)
      STOP
      END
```

SUBROUTINE TRIBIN

Narrative

Subroutine TRIBIN reads the estimates of unmeasured tributary inflow along the lower Colorado River from Hoover Dam to the NIB. The quantities are in acre-feet. The data file is designed to be human readable; much of the information is skipped and only the actual data values are stored as variables. The format for the tributary input data file is shown in attachment C. Note that the data is divided into groups separated by one blank line.

Variable List

Name	Common	Description
DATFILE(2)	[IDATA]	ASCII input data file that consists of the annual tributary-inflow estimates from various tributary streams along the lower Colorado River.
TRIBS(40)	[INDATA]	Array that contains tributary-inflow estimates along the lower Colorado River.

Flow chart

Lower Colorado River Accounting System Subroutine TRIBIN

Begin subroutine TRIBIN

Open the file containing the tributary data

Read the first five blank lines in the data file

Set I equal to 1

Increment I

Read the tributary values 1-4

Repeat until 1 > 4

Set J equal to 1

Increment J

Read one blank line

Repeat until J > 3

Read tributary values 5-7

Increment I

Lower Colorado River Accounting System Subroutine TRIBIN — Continued

Read one blank line in the data file

Read tributary values 8-10

Increment I

Repeat until I > 10

Read one blank line in the dota file

Read tributary values 11-16

Increment I

Repeat until 1 > 16

Set J equal to one

Read one blank line in the data file

Increment J

Lower Colorado River Accounting System Subroutine TRIBIN — Continued

Repeat until J > 3

Read tributary values 17-20

increment i

Repeat until 1 > 20

Read one blank line in the data file

Read tributary values 21-25

Increment !

Repeat until ! > 25

Read one blank line in the data file

Read tributary values 26-29

Increment I

Repeat until ! > 29

Lower Colorado River Accounting System Subroutine TRIBIN — Continued

Set J equal to one

Read one blank line in the data file

Increment J

Repeat until J > 3

Read tributary values 30-31

Increment I

Repeat until 1 > 31

Close tributary data file

Return to main program

Program Listing

```
SUBROUTINE TRIBIN
C
C
      This subroutine reads the tributary data from the DATFIL(2)
      file and stores the values in the variable TRIB(x).
C
      CHARACTER*22 DATFIL(15)
                    TRIBS(40),
                                DUS(20), FLOWS(30),
      REAL*8
                    EVAPS (20),
                               RCHTS(5), AREAS(20)
C
      COMMON / INDATA / FLOWS, TRIBS, AREAS, EVAPS, DUS, RCHTS
      COMMON / IDATA / DATFIL
C
      Open the tributary data file for input.
C
           (16,FILE=DATFIL(2), STATUS='OLD', ERR=200)
C
С
      Read and store the tributary data.
      READ (16,'(///)',ERR=210)
      DO 10 I=1,4
                (16,'(45X,F5.0)',ERR=210) TRIBS(I)
          READ
   10 CONTINUE
      DO 20 I=1,3
         READ (16, '(1X)', ERR=210)
   20 CONTINUE
      DO 30 I=5,7
                (16,'(45X,F5.0)',ERR=210) TRIBS(I)
          READ
   30 CONTINUE
      READ (16,'(1X)', ERR=210)
      DO 40 I=8,10
          READ
                (16,'(45X,F5.0)',ERR=210) TRIBS(I)
   40 CONTINUE
      READ (16,'(1X)', ERR=210)
      DO 50 I=11,16
          READ (16, '(45X, F5.0)', ERR=210) TRIBS(I)
   50 CONTINUE
      DO 60 I=1,3
         READ (16, '(1X)', ERR=210)
   60 CONTINUE
      DO 70 I=17,20
                (16,'(45X,F5.0)',ERR=210) TRIBS(I)
          READ
   70 CONTINUE
      READ (16, '(1X)', ERR=210)
      DO 80 I=21,25
                (16,'(45X,F5.0)',ERR=210) TRIBS(I)
          READ
   80 CONTINUE
      READ (16,'(1X)', ERR=210)
      DO 90 I=26,29
          READ (16, '(45X, F5.0)', ERR=210) TRIBS(I)
   90 CONTINUE
      DO 100 I=1,3
         READ (16,'(1X)',ERR=210)
  100 CONTINUE
      DO 110 I=30,31
                (16, '(45X,F5.0)', ERR=210) TRIBS(I)
          READ
  110 CONTINUE
C
C
      Close DATFIL(2) and return.
Ċ
```

```
CLOSE (16)
RETURN

C
C
C
Error messages.
C
200 WRITE (*,201) DATFIL(2)
201 FORMAT (//,20X,'ERROR - Opening ',A22)
STOP
210 WRITE (*,211) DATFIL(2)
211 FORMAT (//,20X,'ERROR - Reading ',A22)
STOP
END
```

TRIBIN SUBROUTINE

SUBROUTINE DUIN

Narrative

Subroutine DUIN reads and calculates domestic consumptive use along the lower Colorado River. The data are taken from Hoover Dam to the NIB. The data file is designed to be human readable; much of the information is skipped and only the actual data values are stored as variables. If a non-zero value for pumpage is read, then this value is used; if a zero value is read, then the pumpage is set to the resident population multiplied by the resident per capita consumptive use. The estimates of domestic use by user are then written to an output file and summed by State (attachment P). The format for the input data is shown in attachment D. The pumpage with no returns and the resident per capita water-use quantities are in acre-feet.

DUIN SUBROUTINE 8-1

Variable List

Name	Common	Description
AZDU		Arizona total domestic consumptive use along the lower Colorado River.
CADU		California total domestic consumptive use along the lower Colorado River.
CWPP		Resident per capita consumptive use.
DATFIL(3)	[IDATA]	ASCII input data file that consists of pumpage with no returns, the resident population, the resident per capita water use, and the State abbreviation.
DATFIL(10)	[IDATA]	ASCII output file that consists of domestic consumptive use by water user and total domestic consumptive use for Arizona, California, and Nevada.
DNAME		Diverter name.
DOM		Temporary variable for domestic consumptive use.
DUS(20)	[INDATA]	Domestic consumptive use for each reach along the lower Colorado River.
NVDU		Nevada total domestic consumptive use along the lower Colorado River.
POP		Resident population for each area where the domestic consumptive use is to be calculated.
STATE		Two character State code in capital letters.
VARNAM		State initials.

Flow chart

Lower Colorado River Accounting System Subroutine DUIN

Lower Colorado River Accounting System Subroutine DUIN — Continued

Domestic use equals the population times the per capita rate

Determine if variable STATE equals 'AZ'

Set AZDU value equal to AZDU plus DOM value

Determine if variable STATE equals 'CA'

Set CADU value equal to CADU plus DOM

Determine if variable STATE equals 'NV

Set NVDU value equal to NVDU plus DOM value

Set the total domestic—use value equal to the previous domestic use value plus the current domestic—use value

Increments i by 1

Write the diverter name and the domestic-use value to the output file

Write the total Arizona domestic—use value to the output file

Write the total California domestic—use value to the output file

Lower Colorado River Accounting System Subroutine DUIN — Continued

Write the total Nevada domestic—use value to the output file

Close the output file for the domestic—use data

Close the file containing the domestic—use data

Return to the main program

Program Listing

```
SUBROUTINE DUIN
С
0000
       This subroutine reads the domestic-use data from the
      DATFIL(3) file and stores the values in the variable DUS(x).
       CHARACTER*50
                      DATFIL(15)
      CHARACTER*20
                       DNAME
      CHARACTER*2
                       VARNAM, STATE
                       FLOWS(30), AREAS(20), RCHTS(5), POP, CWPP, DOM, TRIBS(40), DUS(20), EVAPS(20), AZDU, CADU, NVDU
      REAL*8
                                                 EVAPS (20), AZDU, CADU, NVDU
С
       COMMON / INDATA / FLOWS, TRIBS, AREAS, EVAPS, DUS, RCHTS
       COMMON / IDATA / DATFIL
С
C
      Open the domestic-use input data file and the domestic-use output
       table file.
      OPEN
              (16,FILE=DATFIL(3), STATUS='OLD', ERR=200)
             (59, FILE=DATFIL(10), ERR=210)
000
       Set the States domestic-use variable to zero (0).
       AZDU = 0
       CADU = 0
      NVDU = 0
С
       Read the first two characters from DATFIL(3).
      READ (16,'(///)')
READ (16,'(A2)',ERR=210) VARNAM
       I = 1
С
0000
       Read the code, diverter name, pumpage with no returns, resident
       population, resident per capita consumptive use, and State the
       diverter is located in.
   10 READ (16, '(A2, A20, 3X, F6.0, 6X, F6.0, 4X, F3.2, 6X, A2)', END=20, ERR=210)
              VARNAM, DNAME, DOM, POP, CWPP, STATE
C
0000
         If the code is blank, continue because the diverter is in the
         current reach. If the code is not blank, complete calculations for
         this reach and continue with the next reach.
         IF (VARNAM .EQ. ' ') THEN
00000
             If the pumpage equals zero (0), then calculate the domestic use as the product of resident population and resident per capita
             consumptive use.
             IF (DOM .EQ. 0) DOM = POP * CWPP
C
             Sum each State's domestic use and the total domestic use for
С
             the reach.
             IF (STATE .EQ. 'AZ') AZDU = AZDU + DOM IF (STATE .EQ. 'CA') CADU = CADU + DOM IF (STATE .EQ. 'NV') NVDU = NVDU + DOM
             DUS(I) = DUS(I) + DOM
          ELSE
```

```
I = I+1
         END IF
0000
         Write the diverter names, domestic use for that diverter, and each
         State's total domestic use to the domestic-use output table.
         WRITE (59, 40, ERR=210) DNAME, DOM
   40
        FORMAT (2X, A20, 6X, F6.0)
      GOTO 10
   20 WRITE (59,50, ERR=210) AZDU
   50 FORMAT (2X, 'ARIZONA DOMESTIC USE', 6X, F6.0)
   WRITE (59,60, ERR=210) CADU
60 FORMAT (2X, 'CALIFORNIA DOMESTIC USE',3X,F6.0)
      WRITE (59,70, ERR=210) NVDU
   70 FORMAT (2X, 'NEVADA DOMESTIC USE', 7X, F6.0)
CCC
      Close the files and return.
      CLOSE (59)
CLOSE (16)
       RETURN
С
С
       Error messages.
  200 WRITE (*,201) DATFIL(3)
  201 FORMAT (//,20X,'ERROR - Opening ',A22)
       STOP
  210 WRITE (*,211) DATFIL(3)
211 FORMAT (//,20X,'ERROR - Reading ',A22)
       STOP
       END
```

DUIN SUBROUTINE

SUBROUTINE AREAIN

Narrative

Subroutine AREAIN reads the open-water surface area and the evaporation rate for each reach along the lower Colorado River. The data file is designed to be human readable; much of the information is skipped and only the actual data values are stored as variables. The format for the data is shown in attachment E.

Variable List

Name	Common	Description
AREAS(20)	[INDATA]	Open-water surface area for each reach along the lower Colorado River.
EVAPS(20)	[INDATA]	Evaporation rate for each reach along the lower Colorado River.
DATFIL(4)	[IDATA]	ASCII file that contains the open-water surface area and the evaporation rate for each reach along the lower Colorado River.

Flow chart

Lower Colorado River Accounting System Subroutine AREAIN

Begin subroutine AREAIN

Open the file containing the open-water surface areas and the evaporation rates

Read the first five blank lines in the data file

Read open-water surface area values 1-6

Repeat until 1 > 6

Read one blank line from the data file

Read evaporation rate values 1-5

Repeat until 1 > 5

Close the file containing the open—water surface areas and the evaporation rates

Return to main program

Program Listing

```
SUBROUTINE AREAIN
C
C
      This subroutine reads the open-water surface areas and the evaporation
C
      rates from the AREA.DATA input file and stores that data in the variables
Č
      AREA(x) and EVAPS(x).
      CHARACTER*22 DATFIL(15)
                     TRIBS(40), DUS(20), FLOWS(25), EVAPS(20), RCHTS(5),
      REAL*8
                     AREAS (20)
С
      COMMON / INDATA / FLOWS, TRIBS, AREAS, EVAPS, DUS, RCHTS
      COMMON / IDATA / DATFIL
      OPEN (16,FILE=DATFIL(4), STATUS='OLD', ERR=200)
      READ (16,'(///)',ERR=210)
DO 10 I=1,6
          READ (16,'(40X,F13.2)',ERR=210) AREAS(I)
   10 CONTINUE
      READ (16,'(/)',ERR=210)
DO 20 I=1,5
          READ (16,'(40X,F13.2)',ERR=210) EVAPS(I)
   20 CONTINUE
      CLOSE (16)
      RETURN
С
  200 WRITE (*,201) DATFIL(4)
  201 FORMAT (//,20X,'ERROR - Opening ',A22)
      STOP
  210 WRITE (*,211) DATFIL(4)
211 FORMAT (//,20X,'ERROR - Writing ',A22)
      STOP
      END
```

SUBROUTINE LUMP

Narrative

Subroutine LUMP reads and processes the image-processing input data file for the lower Colorado River. Header data in the file include the number of vegetation classes, number of vegetation types, and vegetation class numbers. The data include the vegetation classes by vegetation types, vegetation names, diverter names, and acreage associated with each vegetation class for each diverter along a given reach. After the data are read and stored, the subroutine sums the acreages by vegetation type for each diverter along the reach. The image data are from Hoover Dam to the SIB. The format for the image-processing input data file is shown and explained in attachment F. Each reach may be divided into more than one section called a subreach and each subreach may contain up to 100 diverters. Each subreach may contain a different number of vegetation classes but must have the same number of vegetation types.

Variable List

Name	Common	Description
ACRAGE		Acreage value in the image-processing data file.
CORVEG(10)	[COUNTS]	Vegetation acreage less double-cropped area for each reach.
DIVNAM(100)	[VEGDAT]	Name of each diverter in a subreach.
FLAG(60)		Flag that is set when two classification numbers occur in a subreach, used as a part of the net acreage calculation.
INFILE(10)	[LUMP1]	Name of the ASCII input data file that contains the image-processing data for each subreach.
NUMCDE(25)		Number of vegetation classes associated with each crop or phreatophyte-density type.
NUMCLS		Number of classification numbers output by image processing for each subreach.
NUMDIV(10)	[VEGDAT]	Number of diverters within each subreach.
MP SUBROUTINE		10-1

Name	Common	Description
NUMMR	[COUNTS]	Number of reaches the user chooses to be processed by the accounting system.
NUMSUB	[COUNTS]	Number of the subreach currently being processed.
NUMVEG	[VEGDAT]	Number of crop and phreatophyte-density types related to each subreach.
RCHNUM	[COUNTS]	Number of the reach that is currently being processed.
SUBNAM		Name given to each subreach along a single reach.
SUBNUM	[COUNTS]	Total number of subreaches in each reach.
тот	[VEGDAT]	Total number of diverters along the reach being processed.
TOTALS(100,25)	[BOTH4]	Total acreage for each crop and phreatophyte-density type by diverter.
TTOTAL(25)		REAL variable that contains the total acreage by crop and phreatophyte-density type for each reach.
VEGCDE(20,20)		Vegetation codes related to each respective vegetation type.
VEGNAM(50)	[VEGDAT]	Name of each vegetation type associated with each reach.

Flow chart

Lower Colorado River Accounting System Subroutine LUMP

Lower Colorado River Accounting System Subroutine LUMP — Continued

Lower Colorado River Accounting System Subroutine LUMP — Continued

Make comparison to determine if the flag is less than one

Sum the vegetation acreage less the double-cropped area

Set the flag equal to 1 if statement true

Repeat until L > the number of vegetation codes

Repeat until J > the number of vegetation names

Sum the acreage for each vegetation type per diverter

Repeat until J > number of vegetation names

Repeat until 1 > the number of classification numbers

Go back to line 20

Clase the input data file

Lower Colorado River Accounting System Subroutine LUMP — Continued

Repeat until the number of subreaches is greater than the subreach number

Return to main program

LUMP SUBROUTINE

Program Listing

```
SUBROUTINE LUMP
C
C
      This subroutine reads the data from the image-processing
      data file and compiles the acres of each crop and
C
      phreatophyte-density type for each diverter in the reach.
č
      CHARACTER*40
                      SUBNAM.
                                    DIVNAM(100)
      CHARACTER*20
                      VEGNAM(50)
      CHARACTER*22
                      INFILE(10)
      INTEGER*4
                      NUMCLS, NUMVEG,
                                                 NUMDIV (10), NUMCDE (25),
                      NUMMR, VEGCDE (
NUMSUB, SUBNUM,
                               VEGCDE (20,20), TOT,
                                                               TOTALS (100,25),
                                                 RCHNUM.
                                                               CORVEG(10)
      REAL*8
                      ACRAGE, FLAG(60),
                                                 TTOTAL (25)
C
      COMMON / VEGDAT / DIVNAM, VEGNAM, NUMVEG, NUMDIV, TOT
      COMMON / COUNTS / NUMSUB, NUMMR, SUBNUM, RCHNUM, CORVEG
                         / INFILE
      COMMON / LUMP1
      COMMON / BOTH4
                         / TOTALS
      Set the total number of diverters to zero (0).
С
      TOT = 0
C
      For each subreach, read the data from the image-processing
c
      data file.
      DO 75 NUMSUB=1, SUBNUM
         WRITE (*,61) NUMSUB
         FORMAT (8X, 'Processing Satellite data for subreach - ', I2)
               (16, FILE=INFILE(NUMSUB), STATUS='OLD', ERR=80)
                (16,'(20X,A40)', ERR=90) SUBNAM
(16,'(20X,I2)', ERR=100) NUMCLS
(16,'(20X,I2)', ERR=110) NUMVEG
         READ
         READ
         READ
         CORVEG(NUMSUB) = 0
         DO 10 I=1, NUMVEG
           READ (16, '(A20, I2)', ERR=120) VEGNAM(I), NUMCDE(I)
READ (16, *, ERR=130) (VEGCDE(I, J), J=1, NUMCDE(I))
   10
         CONTINUE
C
      Read the diverter name, vegetation type, and the classes
C
      corresponding to each diverter/vegetation type.
         NUMDIV(NUMSUB) = 0
   20
         READ (16,'(//,A40,//)', ERR=140, END=70) DIVNAM(TOT+1)
           DO 6 J = 1, NUMCLS
             FLAG(J)
             TTOTAL(J) = 0
           CONTINUE
    6
           TOT=TOT+1
           NUMDIV (NUMSUB) = NUMDIV (NUMSUB) +1
           DO 60 I=1, NUMCLS
             READ (16,'(20X,F8.2)', ERR=150, END=70) ACRAGE
DO 40 J=1,NUMVEG
                DO 30 L=1, NUMCDE(J)
C
C
                  Sum the vegetation acreage for each diverter/vegetation
C
                  type.
```

```
IF (I .EQ. VEGCDE(J,L)) THEN
                   TTOTAL(J) = TTOTAL(J) + ACRAGE
0000
                   Sum the vegetation acreage less the double-cropped area
                   for each diverter/vegetation type.
                   IF (FLAG(I) .LT. 1) THEN
                     CORVEG (NUMSUB) = CORVEG (NUMSUB) + INT (ACRAGE+.5)
                     FLAG(I) = 1
                   END IF
                 END IF
               CONTINUE
   30
   40
            CONTINUE
C
            Sum the integer of the total acreage for output.
C
   60
          CONTINUE
          DO 45 J = 1, NUMVEG
            TOTALS (TOT, J) = INT (TTOTAL (J) + . 5)
           CONTINUE
   45
        GOTO 20
С
      Close the open data files and return.
   70 CLOSE (16)
   75 CONTINUE
      RETURN
      Error messages.
   80 WRITE (*,81)
   81 FORMAT (//,20X,'ERROR - Opening INFILE(SUBNUM)')
      STOP
   90 WRITE (*,91)
   91 FORMAT (//,20X,'ERROR - Reading SUBNAM')
  100 WRITE (*,101)
  101 FORMAT (//,20X,'ERROR - Reading NUMCLS')
      STOP
  110 WRITE (*,111)
  111 FORMAT (//, 20X, 'ERROR - Reading NUMVEG(RCHNUM)')
      STOP
  120 WRITE (*,121)
  121 FORMAT (//,20X,'ERROR - Reading VEGNAM(RCHNUM,I,)')
      STOP
  130 WRITE (*,131)
  131 FORMAT (//,20X,'ERROR - Reading VEGCDE(I,J)')
      STOP
  140 WRITE (*,141)
  141 FORMAT (//,20X,'ERROR - Reading DIVNAM(RCHNUM,K)')
      STOP
  150 WRITE (*,151)
  151 FORMAT (//,20X,'ERROR - Reading ACRAGE')
      STOP
      END
```

LUMP SUBROUTINE 10-8

SUBROUTINE BC

Narrative

Subroutine BC uses a modified Blaney-Criddle formula (equation 10) to calculate the monthly water-use rates, sum the annual water-use rate for each vegetation type, and compute the evapotranspiration for each vegetation type. Data required are read from four ASCII data files: temperature (attachment G), precipitation (attachment H), empirical water-use coefficients (attachment I), and monthly percentage of total daylight hours of the year (attachment J). These input data files are opened and read, and data are stored within the subroutine. The temperature and precipitation files must be updated each year.

Temperature Data

The temperature input data files contain multiple years of data that consist of the year the data were collected and the mean monthly temperatures for selected stations along the lower Colorado River. Because this subroutine is executed once for every reach, a different temperature file should be used for each reach. The format of the data file is similar to the one produced by the National Climatic Data Center. In order to reduce the width of the table and still contain all the data, decimal points are assumed and not included; therefore, each value must be divided by ten to obtain degrees Fahrenheit.

Precipitation Data

The precipitation input data files contain multiple years of data and consist of monthly precipitation for selected stations along the lower Colorado River. As with the temperature data file, every reach should have a unique precipitation data file. Precipitation data are in hundredths of inches (decimal points are not included) and must be converted to feet by dividing by 1,200.

Water-Use Coefficients

The empirical water-use coefficients input data file consists of the vegetation name and monthly vegetation water-use coefficients. The vegetation name is compared to the names in the image-processing data files. All vegetation names must match exactly including case and space location.

Monthly Daylight Data

The monthly percentage of total daylight hours of the year input data file consists of latitude (LAT) and the monthly percentages of daylight hours for each latitude. As each line is read, the latitude value is compared to the value from the general data file. Once a match is made, the monthly values are read and stored.

BC SUBROUTINE 11-1

Upon collection of the appropriate values for the formula, the numbers are then inserted into the modified Blaney-Criddle formula (equation 10) for computation of monthly water-use rates. The monthly rates are then summed into an annual water-use rate. Multiplying the annual water-use rate by the area of each vegetation type gives the annual evapotranspiration for each crop and phreatophyte-density type. All calculations in this subroutine are performed on real numbers, but because of round-off errors that may occur later in the program, estimates of evapotranspiration are returned to the main program as rounded integers. Finally, total precipitation is summed and stored.

Variable List

BC SUBROUTINE

Name	Common	Description
CRPCOF(50,12)	[WDATA]	Monthly vegetation water-use coefficients.
CRPNAM(50)	[WDATA]	Vegetation names read from the vegetation water-use coefficient input data file and used to compare the vegetation names for each reach read from the image-processing input data file.
DATFIL(5)	[IDATA]	ASCII input data file that consists of the monthly vegetation water-use coefficients for each vegetation type.
DATFIL(6)	[IDATA]	ASCII input data file that contains the latitude and the monthly percentages of total daylight hours of the year.
DAYLIG(12)		Monthly percentages of total daylight hours of the year associated with each selected latitude.
DELTA		Offset used in loop counters to account for subreaches.
DIVNAM(100)	[VEGDAT]	Diverter names for each reach along the lower Colorado River.
DTOTAL(50)	[PHRDAT]	INTEGER value for total evapotranspiration for dense phreatophytes.
ETOTAL(100)	[BLCR1]	INTEGER value for total evapotranspiration by crops for each of the reaches.

11-2

Name	Common	Description
ETUSED(100,25)		INTEGER value for total evapotranspiration per diverter for each of the reaches.
LATITU		Latitude read from the monthly percentage of total daylight hours input data file and used to compare to the location latitude of the subreach, read from the primary input data file.
LOCLAT(10)	[BLCR1]	Location latitude, read from the primary input data file and used to compare to the latitude, read from the monthly percentage of total daylight hours input data file.
MTOTAL(50)	[PHRDAT]	INTEGER value for total evapotranspiration for medium phreatophytes.
MWUR(5,25,12)	[WRATES]	Monthly water-use rates calculated for vegetation types for each reach along the lower Colorado River.
NUMCRP	[VDATA]	Number of vegetation types read from the vegetation water-use coefficients input data file.
NUMDIV(10)	[VEGDAT]	Number of diverters associated with each subreach.
NUMSUB	[COUNTS]	Number of subreaches read from the primary input data file.
NUMVEG	[VEGDAT]	Number of vegetation types read from the image- processing input data files.
PFILE(10)	[SDATA]	ASCII input data file that contains the precipitation data for selected stations along the lower Colorado River.
PPTS	[PPT1]	Monthly precipitation values from selected weather stations.
PRECPS(12)		Monthly precipitation values taken from selected stations associated with each subreach.
RCHNUM	[COUNTS]	Number of reaches currently being processed.
STOTAL(50)	[PHRDAT]	INTEGER value for total evapotranspiration for sparse phreatophytes.
UBROUTINE		11-3

Name	Common	Description
SUBNUM	[COUNTS]	Number of subreaches per reach.
TDTOTA		REAL value for total evapotranspiration for dense phreatophytes.
TEMPER(12)		Monthly temperature values from selected weather stations.
TETOTA		Total crop evapotranspiration for each reach.
TETUSE		Temporary evapotranspiration value.
TFILE(10)	[SDATA]	ASCII input data file that contains the temperature values for selected stations along the lower Colorado River.
ТМТОТА		REAL value for total evapotranspiration for medium phreatophytes.
TOTALS(100,25)	[BOTH4]	Acreage for each crop and phreatophyte-density type by diverter.
TSTOTA		REAL value for total evapotranspiration for sparse phreatophytes.
TYEAR		Temporary year, read from the temperature and precipitation input data files and compared with the year to be processed, which is read from the primary input data file.
VEGNAM(50)	[VEGDAT]	Vegetation names read from the image-processing input data files used to compare the vegetation type names read from the vegetation water-use coefficient input data file.
WUR(5,25)	[WRATES]	Annual water-use rates summed for each vegetation type by reach along the lower Colorado River.
YEAR	[BLCR1]	Year to be processed, which is read from the primary input data file and compared with the temporary year, read from the temperature and precipitation input data files.

Flow chart

Lower Colorado River Accounting System Subroutine BC

Open the input data file containing the empirical water—use coefficients

Read the first three blank lines in the data file

Set K equal to zero

Read the vegetation name

Read the vegetation coefficients

Repeat until J > 12

Repeat until end of file

Increment K

Go back to line 10

Set the variable NUMCRP equal to K

Clase the empirical water—use coefficients input data file

Set counter equal to zero

Lower Colorado River Accounting System Subroutine BC — Continued

BC SUBROUTINE

Lower Colorado River Accounting System Subroutine BC — Continued

Lower Colorado River Accounting System Subroutine BC — Continued

Repeat until K > 12

Determine if the year to be processed is not equal to the year read in the temperature data file

Go back to line 80

Divide the temperature value by 10 to get the units to degrees Fahrenheit

Repeat until K > 12

Clase the temperature data file

Open the input data file containing monthly precipitation

Read the first two lines in the precipitation data file

Read the year in the precipitation data file

Read the precipitation

Repeat until K > 12

Lower Colorado River Accounting System Subroutine BC — Continued

Determine if the year in the precipitation file equals the year to be processed

Go back to line 15

Close the precipitation data file

Set the total vegetation evapotranspiration value to zero

Set the total sparse evapotranspiration value to zero

Set the total medium evapotranspiration value to zera

Set the total dense evapotranspiration value to zero

Set the water-use rate value to zero

Set the evapotronspiration value to zero

Determine if the vegetation name equals the crop name

Calculate the monthly water-use rate

Lower Colorado River Accounting System Subroutine BC — Continued

Lower Colorado River Accounting System Subroutine BC — Continued

Lower Colorado River Accounting System Subroutine BC — Continued

Sum evapotranspiration for sparse phreatophytes

Change the sparse evapotranspiration value to an integer

Change the medium evapotranspiration value to an integer

Change the total vegetation evapotranspiration value to an integer

Change the dense evapotronspiration value to an integer

Repeat until 1 > the last diverter

Repeat until the number of subreaches is > the subreach number

Sum the precipitation

Repeat until 1 > 12

Return to main program

Program Listing

```
SUBROUTINE BC
C
      This subroutine calculates the monthly water-use rates and
      the annual water-use rate for each vegetation type using the Blaney-Criddle formula. The following input files must be
C
      in a specific format: DATFIL(5), DATFIL(6), TFILE, and PFILE.
C
      CHARACTER*40
                      DIVNAM(100)
      CHARACTER*22
                      DATFIL(15), TFILE(10),
                                                  PFILE(10)
      CHARACTER*20
                      VEGNAM(50), CRPNAM(50)
      INTEGER*4
                      NUMVEG,
                                   NUMDIV(10),
                                                  NUMSUB.
                                                                    TYEAR.
                      YEAR,
                                   DELTA,
                                                  TOTALS (100,25), MTOTAL (50),
                      LOCLAT(10), LATITU, NUMMR,
DTOTAL(50), ETOTAL(100), NUMCRP,
                                                                    SUBNUM,
                                                                    TOT
                      RCHNUM,
                                   STOTAL (50),
                                                  ETUSED (100,25), CORVEG (10)
                                   TETOTA,
                                                                    TETUSE,
      REAL*8
                      TMTOTA.
                                                  CRPCOF (50, 12),
                      DAYLIG(12), TEMPER(12),
                                                  PRECPS (12),
                                                                    TDTOTA,
                      PPTS,
                                   TPRECP,
                                                  MWUR (5, 25, 12),
                                                                    WUR (5, 25),
                      PRECIP(5)
C
      COMMON / COUNTS / NUMSUB, NUMMR,
                                            SUBNUM, RCHNUM, CORVEG
      COMMON / VEGDAT / DIVNAM, VEGNAM, NUMVEG, NUMDIV, TOT
      COMMON / BOTH4 / TOTALS
      COMMON / PPT1
                        / PPTS,
                                   PRECIP
      COMMON / PHRDAT / DTOTAL, MTOTAL, STOTAL
      COMMON / BLCR1 / LOCLAT, ETOTAL, YEAR
      COMMON / WDATA
                        / CRPCOF, CRPNAM
      COMMON /
                WRATES / MWUR,
                                   WUR
      COMMON / VDATA / NUMCRP
      COMMON / SDATA
                        / PFILE.
                                   TFILE
      COMMON / IDATA
                        / DATFIL
C
C
      Read the data from DATFIL(6).
      OPEN (16, FILE=DATFIL(5), STATUS='OLD', ERR = 240)
      READ (16,'(//)', ERR = 90)
      K=0
   10 READ (16, '(A20, 12F6.2)', ERR=250, END=20) CRPNAM(K+1),
            (CRPCOF(K+1,J),J=1,12)
      K=K+1
      GOTO 10
   20 \text{ NUMCRP} = K
      CLOSE (16)
C
C
      DELTA = 0
      PPTS = 0
      DO 199 NUMSUB=1, SUBNUM
         WRITE (*,21) NUMSUB
         FORMAT (8X, 'Applying Blaney-Criddle formula to subreach -', I2)
         Read the input data from DATFIL(6).
C
         OPEN (16, FILE=DATFIL(6), STATUS='OLD', ERR=210)
         READ (16,'(///)', ERR=90)
READ (16,'(I2,2X,12F6.2)',ERR=260, END=90) LATITU,
   30
               (DAYLIG(K), K=1, 12)
           IF (LATITU .EQ. LOCLAT(NUMSUB)) GOTO 50
```

BC SUBROUTINE 11-13

```
GOTO 30
      50 CLOSE (16)
C
         Read the data from the temperature input files and convert
000
         from tenths of degrees Fahrenheit to degrees Fahrenheit.
         IF (NUMSUB .NE. 1) DELTA = DELTA + NUMDIV(NUMSUB-1)
C
         OPEN (16, FILE=TFILE(NUMSUB), STATUS='OLD', ERR=220)
READ (16,'(/)', ERR=90)
READ (16,'(14,12F5.0)', ERR=90, END=270) TYEAR, (TEMPER(K), K=1,12)
IF (TYEAR .NE. YEAR) GOTO 80
   80
         DO 85 K=1,12
   85
           TEMPER(K) = TEMPER(K)/10.
         CLOSE (16)
C
CCC
         Read the data from the precipitation input files and convert
         precipitation from hundredths of inches to feet.
         OPEN (16, FILE=PFILE(NUMSUB), STATUS='OLD', ERR=230)
READ (16,'(/)', ERR=290)
         READ (16, '(14, 12F5.0)', ERR=280, END=90) TYEAR, (PRECPS(K), K=1, 12)
         IF (TYEAR .NE. YEAR) GOTO 15
         CLOSE (16)
C
         DO 140 I=DELTA+1, DELTA+NUMDIV(NUMSUB)
           TETOTA = 0
           TSTOTA = 0
           TMTOTA = 0
           TDTOTA = 0
           DO 130 J=1, NUMVEG
              WUR(NUMSUB,J) = 0
              TETUSE
CCC
              Compute the water-use rate, in feet, for each crop and
              phreatophyte-density type in each reach.
              DO 120 L=1, NUMCRP
                IF (VEGNAM(J) .EQ. CRPNAM(L)) THEN
                  DO 100 K=1,12
                     TPRECIP = PRECPS(K)
                     IF (L .GT. NUMCRP-3) TPRECIP = 0.0
                     MWUR (NUMSUB, J, K) = (CRPCOF(L, K) *TEMPER(K) *DAYLIG(K))
                                            /12. - (TPRECIP/1200.)
                     IF (MWUR(NUMSUB,J,K) .LE. 0) MWUR(NUMSUB,J,K) = 0
MWUR(NUMSUB,J,K) = INT(MWUR(NUMSUB,J,K) *100.+0.5) /100.
                     WUR (NUMSUB, J) = WUR (NUMSUB, J) + MWUR (NUMSUB, J, K)
  100
                  CONTINUE
00000
                  Compute the evapotranspiration, in acre-feet, for each
                  crop and phreatophyte-density type for each
                  diverter in each reach.
                  TETUSE = TETUSE + WUR (NUMSUB, J) *TOTALS(I, J)
                   IF (VEGNAM(J)(:6).EQ.'SPARSE') THEN
                     TSTOTA = TSTOTA + TETUSE
                     GOTO 130
                  END IF
                   IF (VEGNAM(J)(:6).EQ.'MEDIUM') THEN
                     TMTOTA = TMTOTA + TETUSE
                     GOTO 130
                   END IF
```

```
IF (VEGNAM(J)(:5).EQ.'DENSE') THEN
                   TDTOTA = TDTOTA + TETUSE
                   GOTO 130
                 END IF
                 GOTO 125
              END IF
  120
            CONTINUE
             STOP
  125
             ETUSED(I,J) = INT((TETUSE+.005)*100.)/100.
             TETOTA = TETOTA + TETUSE
  130
          CONTINUE
          STOTAL(I) = INT(TSTOTA+0.5)
          MTOTAL(I) = INT(TMTOTA+0.5)
ETOTAL(I) = INT(TETOTA+0.5)
           DTOTAL(I) = INT(TDTOTA+0.5)
  140
        CONTINUE
        DO 40 I = 1,12
           PPTS = PPTS + PRECPS(I)/1200
   40
        CONTINUE
  199 CONTINUE
      PPTS = INT((PPTS / SUBNUM) * 100 + .5) / 100.
      PRECIP(RCHNUM) = PPTS
      RETURN
C
      Error messages
   90 WRITE (*,201)
  201 FORMAT (//,20X,'ERROR - DATA READING')
      STOP
  240 WRITE (*,241)
  241 FORMAT (//, 20X, 'ERROR - READING KC.DATA')
      STOP
  210 WRITE (*,211)
  211 FORMAT (//,20X,'ERROR - READING LIGHT.DATA')
      STOP
  220 WRITE (*,221)
  221 FORMAT (//,20X,'ERROR - READING TEMPERATURE FILE')
      STOP
  230 WRITE (*,231)
  231 FORMAT (//, 20X, 'ERROR - READING PRECIPITATION FILE')
      STOP
  250 WRITE (*,251)
  251 FORMAT (//, 20X, 'ERROR - READING CRPNAM')
  260 WRITE (*,261)
  261 FORMAT (//,20X,'ERROR - READING LATITUDE')
      STOP
  270 WRITE (*,271)
  271 FORMAT (//,20X,'ERROR - READING TEMPERATURE')
      STOP
  280 WRITE (*,281)
  281 FORMAT (//,20X,'ERROR - READING PRECIPITATION')
      STOP
  290 WRITE (*,291)
  291 FORMAT (//,20X,'ERROR - READING FIRST LINE')
      STOP
      END
```

BC SUBROUTINE 11-15

SUBROUTINE BWR

Narrative

Subroutine BWR, by using equation 12, computes the streamflow in the Bill Williams River that reaches the Colorado River. This inflow is one of the components in the water budget for the Davis Dam to Parker Dam reach. Evapotranspiration from vegetation along the river, as well as the net vegetated acreage, are summed. Once flow into the Colorado River is calculated, each quantity in the water budget is written to an output file.

Variable List

Name	Common	Description
AREAS(5)	[INDATA]	Open-water surface area along the Bill Williams River below Alamo Dam.
BILOUT	[RDAT4]	Streamflow from the Bill Williams River to the Davis Dam to Parker Dam reach.
BWRET		Total evapotranspiration by crops and phreatophytes along the Bill Williams River.
CORVEG(NUMSUB)	[COUNTS]	Total net vegetated area for the Bill Williams River.
DTOTAL(K)	[PHRDAT]	Total evapotranspiration for dense phreatophytes along the Bill Williams River.
ETOTAL(100)	[BLCR1]	Integer value for total evapotranspiration for crops.
EVAPS(5)	[INDATA]	Evaporation rate for the open-water surface area along the Bill Williams River.
FLOWS(5)	[INDATA]	Flow in the Bill Williams River below Alamo Dam.

Name	Common	Description
MTOTAL(K)	[PHRDAT]	Total evapotranspiration for the medium phreatophytes along the Bill Williams River.
NETACR		Total net vegetated area along the Bill Williams River.
NUMSUB	[COUNTS]	Number of subreaches in the Bill Williams River reach.
NUMVEG	[VEGDAT]	Number of vegetation types read from the image- processing input data files.
PPTS	[PPT1]	Total precipitation for the Bill Williams River reach.
STOTAL(K)		Total evapotranspiration for sparse phreatophytes along the Bill Williams River.
SUBNUM	[COUNTS]	Subreach number currently being processed.
TRIBS(10)	[INDATA]	Unmeasured average annual runoff to the Bill Williams River.
TRIBS(16)	[INDATA]	Ground-water discharge to the Bill Williams River.

Flow chart

Lower Colorado River Accounting System Subroutine BWR

Begin subroutine BWR

Set the net acreage equal to zero

Set K equal to zero

Increment K

Colculate the Bill Williams River evapotranspiration

Determine if K equals the number of vegetation types

Set the Bill Williams River Inflow value equal to zero

increment NUMSUB

Sum the net acreage

Determine if the number of subreaches equois the subreach number

Lower Colorado River Accounting System Subroutine BWR — Continued

Compute inflow to the Davis Dom to Parker Dam reach

Write the identification heading to the output file for the BM Williams River

Write the surface—water area for the Bill Williams River to the output file

Write the evaporation rate to the output file for the Bill Williams River

Write the evaporation from open—water surface areas to the output file for the Bill Williams River

Write the amount of precipitation to the output file for the Bill Williams River

Write the precipitation value to the output file for the Bill Williams River

Write the inflow to the Davis to Parker Dam reach

Return to the main program

Program Listing

```
SUBROUTINE BWR
C
       This subroutine calculates the streamflow in the
       Bill Williams River that enters the Colorado River.
       CHARACTER*40
                       DIVNAM(100)
       CHARACTER*20
                       VEGNAM (50)
                                                                   SUBNUM,
       INTEGER*4
                       LOCLAT(10),
                                      RCHNUM,
                                                    NUMSUB,
                                                    NUMDIV(10),
                       NUMMR.
                                      TOT.
                                                                   YEAR.
                                      DTOTAL (50), MTOTAL (50),
                       NUMVEG,
                                                                   STOTAL (50),
                       ETOTAL(100), CORVEG(10)
      REAL*8
                       FLOWS (30),
                                                                    PPTS,
                                      DUS(20),
                                                    TRIBS(40),
                       AREAS (20),
                                      EVAPS (20),
                                                    RCHTS(5),
                                                                   BILOUT,
                       BWRET.
                                      NETACR.
                                                    PRECIP(5)
C
       COMMON / RDAT4 / BILOUT
       COMMON / BLCR1
                         / LOCLAT, ETOTAL, YEAR
       COMMON / INDATA / FLOWS, TRIBS
COMMON / PPT1 / PPTS, PRECIP
                                     TRIBS,
                                             AREAS,
                                                        EVAPS,
                                                                 DUS,
                                                                         RCHTS
       COMMON / PPT1
       COMMON / VEGDAT / DIVNAM, VEGNAM, NUMVEG, NUMDIV, TOT
       COMMON / PHRDAT / DTOTAL, MTOTAL, STOTAL COMMON / COUNTS / NUMSUB, NUMMR, SUBNUM
                                              SUBNUM, RCHNUM, CORVEG
C
       NETACR = 0
C
C
       Calculate the total crop and phreatophyte evapotranspiration.
       DO 30 K = 1, NUMVEG
         BWRET = BWRET + ETOTAL(K) + DTOTAL(K) + MTOTAL(K) + STOTAL(K)
   30 CONTINUE
C
       Calculate the total acreage minus the double-cropped area.
       DO 50 NUMSUB = 1, SUBNUM
         NETACR = NETACR + CORVEG(NUMSUB)
   50 CONTINUE
C
       Calculate the streamflow in the Bill Williams River that
C
       enters the Colorado River.
  120 BILOUT = FLOWS(5) + TRIBS(10) + TRIBS(16) - BWRET -
                   (AREAS(5)*EVAPS(5)) + (AREAS(5)+NETACR)*PPTS
C
       Write the open-water surface area, evaporation rate, area times
       evaporation rate, precipitation, precipitation rate, and flow to
the Colorado River from the Bill Williams River to the output file.
C
C
       WRITE (58,60, ERR=250)
   60 FORMAT (2X, 'BILL WILLIAMS REACH')
      WRITE (58,65,ERR=250) AREAS(5)
WRITE (58,66,ERR=250) EVAPS(5)
WRITE (58,67,ERR=250) AREAS(5)*EVAPS(5)
       WRITE (58,69,ERR=250) (AREAS(5)+NETACR)*PPTS
       WRITE (58,70, ERR=250) PPTS
       WRITE (58,71, ERR=250) BILOUT
   65 FORMAT (4X, 'AREAS(5)'18X, F9.2)
    66 FORMAT (4X, 'EVAPS(5)'18X, F9.2)
```

BWR SUBROUTINE

```
67 FORMAT (4X, 'AREAS(5)*EVAPS(5)'9X,F9.2)
69 FORMAT (4X, '(AREAS(5)*NETACR)*PPTS'4X,F9.2)
70 FORMAT (4X, 'PRECIPITATION'13X,F9.2)
71 FORMAT (4X, 'FLOW TO COLORADO RIVER'1X,F12.2)
RETURN

C
C
Error messages.
C
250 WRITE (*,251)
251 FORMAT (//,20X, 'ERROR - WRITING TO FILE 58')
STOP
END
C
```

BWR SUBROUTINE

SUBROUTINE HV2ML

Narrative

Subroutine HV2ML calculates consumptive use by vegetation along the Colorado River between Hoover Dam and Morelos Dam by using equation 8. This subroutine also produces a table for the Hoover Dam to Morelos Dam reach that lists evapotranspiration, percentage of evapotranspiration, and consumptive use by vegetation for each diverter (attachment O).

Variable List

Name	Common	Description
AREAS(1)	[INDATA]	Open-water surface area in the reach between Hoover Dam and Davis Dam.
AREAS(2)	[INDATA]	Open-water surface area in the reach between Davis Dam and Parker Dam.
AREAS(3)	[INDATA]	Open-water surface area in the reach between Parker Dam and Imperial Dam.
AREAS(4)	[INDATA]	Open-water surface area in the reach between Imperial Dam and Morelos Dam.
BILOUT	[RDATA4]	Inflow from the Bill Williams River, calculated with the BWR subroutine.
DUS(1)	[INDATA]	Domestic water use along the reach between Hoover Dam and Davis Dam.
DUS(2)	[INDATA]	Domestic water use along the reach between Davis Dam and Parker Dam.
DUS(3)	[INDATA]	Domestic water use along the reach between Parker Dam and Imperial Dam.

Name	Common	Description
DUS(4)	[INDATA]	Domestic water use along the reach between Imperial Dam and Morelos Dam.
EVAPS(1)	[INDATA]	Evaporation rate for the reach between Hoover Dam and Davis Dam.
EVAPS(2)	[INDATA]	Evaporation rate for the reach between Davis Dam and Parker Dam.
EVAPS(3)	[INDATA]	Evaporation rate for the reach between Parker Dam and Imperial Dam.
EVAPS(4)	[INDATA]	Evaporation rate for the reach between Imperial Dam and Morelos Dam.
FLOWS(1)	[INDATA]	Measured discharge below Hoover Dam.
FLOWS(2)	[INDATA]	Change in storage in Lake Mohave.
FLOWS(3)	[INDATA]	Measured discharge below Davis Dam.
FLOWS(4)	[INDATA]	Outflow in the Colorado River Aqueduct.
FLOWS(6)	[INDATA]	Outflow in the Central Arizona Project Canal.
FLOWS(7)	[INDATA]	Change in storage in Lake Havasu.
FLOWS(8)	[INDATA]	Measured discharge below Parker Dam.
FLOWS(9)	[INDATA]	Change in storage in Senator Wash Reservoir.
FLOWS(10)	[INDATA]	Measured flow above Imperial Dam.
FLOWS(13)	[INDATA]	Outflow in the All American Canal below Pilot Knob.
FLOWS(15)	[INDATA]	Outflow in the Wellton-Mohawk Canal.
FLOWS(17)	[INDATA]	Inflow from the Gila River near Dome.

Name	Common	Description
FLOWS(18)	[INDATA]	Measured outflow at the Northerly International Boundary.
FLOWS(19)	[INDATA]	Surface-water return flow from Eleven Mile wasteway.
FLOWS(20)	[INDATA]	Surface-water return flow from Cooper wasteway.
FLOWS(21)	[INDATA]	Surface-water return flow from Twenty-One Mile wasteway.
FLOWS(22)	[INDATA]	Surface-water return flow from Main Drain.
FLOWS(23)	[INDATA]	Surface-water return flow from West Main Canal wasteway.
FLOWS(22)	[INDATA]	Surface-water return flow from East Main Canal wasteway.
NETACR		Net acreage of crops along the reach.
PRECIP(1)	[PPT1]	Precipitation for each area in the reach between Hoover Dam and Davis Dam.
PRECIP(2)	[PPT1]	Precipitation for each area in the reach between Davis Dam and Parker Dam.
PRECIP(3)	[PPT1]	Precipitation for each area in the reach between Parker Dam and Imperial Dam.
PRECIP(4)	[PPT1]	Precipitation for each area in the reach between Imperial Dam and Morelos Dam.
TRIBS(1)	[INDATA]	Ground-water discharge from springs downstream from Hoover Dam.
TRIBS(2)	[INDATA]	Unmeasured average annual runoff along the reach.

Name	Common	Description
TRIBS(3)	[INDATA]	Ground-water discharge from the Colorado River valley.
TRIBS(4)	[INDATA]	Ground-water discharge from Eldorado Valley.
TRIBS(5)	[INDATA]	Unmeasured average annual runoff from Davis Dam to Topock.
TRIBS(6)	[INDATA]	Unmeasured average annual runoff from Topock to Parker Dam.
TRIBS(7)	[INDATA]	Unmeasured average annual runoff from the Whipple Mountains.
TRIBS(8)	[INDATA]	Unmeasured tributary inflow from Piute Wash.
TRIBS(9)	[INDATA]	Unmeasured tributary inflow from Sacramento Wash.
TRIBS(11)	[INDATA]	Ground-water discharge from Davis Dam to Topock.
TRIBS(12)	[INDATA]	Ground-water discharge from Topock to Parker Dam.
TRIBS(13)	[INDATA]	Ground-water discharge from Piute Valley.
TRIBS(14)	[INDATA]	Ground-water discharge from Sacramento Valley.
TRIBS(15)	[INDATA]	Ground-water discharge from Chemehuevi Valley.
TRIBS(17)	[INDATA]	Unmeasured average annual runoff from the Whipple Mountains.
TRIBS(18)	[INDATA]	Unmeasured average annual runoff from the Big Maria Mountains.

Name	Common	Description
TRIBS(19)	[INDATA]	Unmeasured average annual runoff from the Palo Verde-Mule Mountains.
TRIBS(20)	[INDATA]	Unmeasured average annual runoff from Dome Rock-Trigo-Chocolate Mountains.
TRIBS(21)	[INDATA]	Unmeasured tributary inflow from Vidal Wash.
TRIBS(22)	[INDATA]	Unmeasured tributary inflow from Bouse Wash.
TRIBS(23)	[INDATA]	Unmeasured tributary inflow from Tyson Wash.
TRIBS(24)	[INDATA]	Unmeasured tributary inflow from McCoy Wash.
TRIBS(25)	[INDATA]	Unmeasured tributary inflow from Milpitas Wash.
TRIBS(26)	[INDATA]	Ground-water discharge from Vidal Wash.
TRIBS(27)	[INDATA]	Ground-water discharge from Bouse Wash.
TRIBS(28)	[INDATA]	Ground-water discharge from Tyson Wash.
TRIBS(29)	[INDATA]	Ground-water discharge from Chuckwalla Valley.
TRIBS(30)	[INDATA]	Unmeasured average annual runoff along the reach.
TRIBS(31)	[INDATA]	Ground-water discharge near Dome.

Flow chart

Lower Colorado River Accounting System Subroutine HV2ML

Set the FDTOT (flow into the river) to include FLOWS(1), BILOUT, and FLOWS(17)

Set I equal to zero for use as a counter

Increment I

Add total precipitation falling on the vegetated area to the total flow

Determine if all the subreaches have been added

Set I equal to zero for use as a counter

Increment I

Add all the tributary values in the data file to the total flow

Determine if all the tributaries have been added

Subtract all tributary inflows used for Bill Williams River and subtract all exported flows from the total flow in the reach

Lower Colorado River Accounting System Subroutine HV2ML — Continued

Reset PTOT to zero

Set I equal to zero for use as a counter

increment i

Calculate the amount of evaporation from the open-water surface and add to PTOT

Determine If all the subreaches have been added

Write the evaporation for the reach and the sum of the domestic—use values to a verification file

Reset PTOT for another use

Set I equal to zero for use as a counter

Increment I

Calculate the amount of precipitation that falls on the open-water surface areas and the total vegetated area along the reach

Determine if all the subreaches have been added

Write the precipitation value, the sum of the precipitation rates, and the total consumptive use along the reach

Lower Colorado River Accounting System Subroutine HV2ML — Continued

Set I equal to zero for use as a counter

Increment I

Check to see if the diverter is flagged to be skipped with an '+'

Reduce the number of diverters by one

Set J equal to I-1 for use as a counter

Increment J

Mave the diverter name and the diverter ET total up in the array to fill the slat left by removing the flagged diverter

Repeat for all the diverters

Repeat for all the diverters

Set I equal to zera for use as a counter

Increment I

Set J equal to zero for use as a counter

increment J

Lower Colorado River Accounting System Subroutine HV2ML — Continued

Check to see if the diverter name appears in the array

Add the ET totals for the diverter that appears twice

Decrease the number of diverters by one

Set K equal to J-1 for use as a counter

Increment K by one

Move the diverter names and ET totals down in the matrix to replace the duplicate diverter name

Repeat for all the remaining diverters

Repeat for all the diverters

Repeat for all the diverters minus one

Reset ETOT to zero

Reset I ta zera far use as a counter

increment I by one

Lower Colorado River Accounting System Subroutine HV2ML — Continued

Check to see if the diverter name starts with PHRE

Change the name of the diverter to ZZZZ so it is sorted last

Repeat for all diverters

Reset I to zero for use as a counter

increment I by one

Reset J to zero for use as a counter

Increment J by one

Check to see if the diverter names ore in alphanumeric order

Switch the diverter name with the one after it to put them in order

Switch the evapotronspiration total to match the switch of the diverter names

Check if J is greater than the total number of diverters minus I

Lower Colorado River Accounting System Subroutine HV2ML — Continued

Check to see if I is greater than the total number of diverters minus one

Read in the number of lines in the title and the name of the output file

Open the file TNAME for output to print the complete table

Reset I to zero for use as a counter

increment I by one

Read a line for the table title from the title data file

Write the table title line to the output file

Continue reading and writing the title for XLINES of lines

Write the headings for the table, these are hard coded in the program

Set CK to the State code for the first diverter to be used to separate the States on the table

Write the first State name, 'ARIZONA'

Set all af the tatal variables to zera for calculation during the printing processes

Lower Colorado River Accounting System Subroutine HV2ML — Continued

Lower Colorado River Accounting System Subroutine HV2ML — Continued

Reset the State total counters for the evapotranspiration, percentage, and consumptive use

Set CK to the State code for the next set of diverters

Check to see if the new State is California

Print out the heading for the State of California

Check to see if the new State is Nevada

Print out the heading for the State of Nevada

Check to see if the new State is Federal Lands

Print out the heading for the State of Federal Lands

Check to see if the diverter name has been changed to 'ZZZZ'

Change the diverter name back from 'ZZZZ' to 'Phreatophytes'

Lower Colorado River Accounting System Subroutine HV2ML — Continued

Write the diverter name, total evapotronspiration, percentage, and estimated consumptive use

Repeat loop for all diverters

Write the total line for the Federal Lands

Write the total line for the reach from Hoover Dam to Morelos Dam

Close output file 69

Return to main program

Program Listing

```
SUBROUTINE HV2ML
C
      This subroutine calculates consumptive use by vegetation for
      the Colorado River between Hoover Dam and NIB.
      CHARACTER*100 TITLE
      CHARACTER*40
                     FDNAME(250), T
      CHARACTER*22
                     TNAME
      CHARACTER*2
                     CK
      INTEGER*4
                     RCHNUM,
                                    NUMSUB,
                                               SUBNUM,
                                                           NUMMR,
                                                                       FDNUM
                      XLINES,
                                CORVEG(10)
                      FLOWS (30),
                                               TRIBS(40), AREAS(20),
      REAL*8
                                    DUS (20),
                      EVAPS (20),
                                    RCHTS(5), NETACR,
                                                           PPTS.
                      FDETOT(250), FDTOT,
                                               FDACR(5),
                                                           BILOUT,
                                               TOTC,
                      ETOT,
                                    TOTE,
                                                           TOTP.
                      Ρ,
                                               PTOT,
                                                           PRECIP(5)
C
      COMMON / INDATA / FLOWS,
                                  TRIBS, AREAS, EVAPS, DUS, RCHTS
      COMMON / PPT1 / PPTS, PRECIP
      COMMON / COUNTS / NUMSUB, NUMMR, SUBNUM
COMMON / SUMMRY / FDNAME, FDETOT, FDNUM
COMMON / SUM2 / FDACR
                                          SUBNUM, RCHNUM, CORVEG
      COMMON / RDAT4 / BILOUT
      Calculate consumptive use by vegetation between Hoover Dam
      and Morelos Dam.
      WRITE (*,49)
   49 FORMAT (//,2X,'Processing the entire river - HV2ML')
      FDTOT = FLOWS(1) + BILOUT + FLOWS(17)
      DO 51 I=1,4
        FDTOT = FDTOT + (AREAS(I)+FDACR(I))*PRECIP(I)
        FDTOT = FDTOT - (AREAS(I) *EVAPS(I))
        FDTOT = FDTOT - DUS(I)
   51 CONTINUE
      DO 52 I=1,31
        FDTOT = FDTOT + TRIBS(I)
   52 CONTINUE
      FDTOT = FDTOT-FLOWS(2)-FLOWS(4)-FLOWS(6)-FLOWS(7)-FLOWS(9)-
               TRIBS (10) -TRIBS (16) -FLOWS (13) -FLOWS (15)
      DO 53 I=18,24
        FDTOT = FDTOT - FLOWS(I)
   53 CONTINUE
С
      Write the results to the output file.
      WRITE (58,60, ERR=250)
   60 FORMAT (/,2X,'HV2ML')
      PTOT = 0.
DO 501 I=1,4
         PTOT = PTOT + AREAS(I)*EVAPS(I)
  501 CONTINUE
      WRITE (58,65,ERR=250) PTOT
WRITE (58,66,ERR=250) EVAPS(1)+EVAPS(2)+EVAPS(3)+EVAPS(4)
      WRITE (58,67, ERR=250) AREAS (1) *EVAPS (1)
      WRITE (58,68,ERR=250) DUS(1)+DUS(2)+DUS(3)+DUS(4)
       PTOT = 0.
      DO 54 I=1,4
         PTOT = PTOT + (AREAS(I)+FDACR(I))*PRECIP(I)
```

```
54 CONTINUE
       WRITE (58,69, ERR=250) PTOT
       WRITE (58,70,ERR=250) PRECIP(1)+PRECIP(2)+PRECIP(3)+PRECIP(4)
   WRITE (58,71,ERR=250) FDTOT
65 FORMAT (4X,'SUM(AREAS*EVAPS)'10X,F9.2)
66 FORMAT (4X,'EVAPS(1)'18X,F9.2)
67 FORMAT (4X,'AREAS(1)*EVAPS(1)'9X,F9.2)
   68 FORMAT (4X, 'DUS(SUM)'18X,F9.2)
69 FORMAT (4X, 'SUM(AREAS+NETACR)*PPTS'4X,F9.2)
   70 FORMAT (4X, 'SUM PRECIPITATION'9X, F9.2)
   71 FORMAT (4X, 'CONSUMPTIVE USE'8X, F12.2)
               (*,72) FDTOT
       WRITE
   72 FORMAT (10X, 'Consumptive use for the entire river is ',F12.2)
CC
       Remove any diverters flagged with a '*' in the third column.
       DO 666 I=1, FDNUM
         IF (FDNAME(I)(3:3) .EQ. '*') THEN
            FDNUM = FDNUM-1
            DO 667 J=I, FDNUM
              FDNAME(J) = FDNAME(J+1)
              FDETOT(J) = FDETOT(J+1)
  667
            CONTINUE
         END IF
  666 CONTINUE
C
       Remove any diverter that may appear twice.
C
       DO 101 I=1, FDNUM-1
         DO 102 J=I+1, FDNUM
            IF (FDNAME(I) .EQ. FDNAME(J)) THEN
              FDETOT(I) = FDETOT(I) + FDETOT(J)
              FDNUM = FDNUM - 1
              DO 103 K=J, FDNUM
                FDNAME(K) = FDNAME(K+1)
                FDETOT(K) = FDETOT(K+1)
  103
              CONTINUE
           END IF
  102
         CONTINUE
  101 CONTINUE
CC
       Change the name of the phreatophyte-density types to place
       them last when the diverters are sorted.
Ċ
       ETOT = 0
       DO 111 I=1,FDNUM
         IF (FDNAME(I)(4:7) .EQ. 'PHRE') THEN
            FDNAME(I) = FDNAME(I)(:3) // 'ZZZZ'
         END IF
         ETOT = ETOT + FDETOT(I)
  111 CONTINUE
C
C
       Sort the remaining diverters by State and name.
       DO 121 I=1, FDNUM
         DO 122 J=1, FDNUM-1
            IF (FDNAME(J) .GT. FDNAME(J+1)) THEN
              T = FDNAME(J+1)
              FDNAME(J+1) = FDNAME(J)
              FDNAME(J) = T
              TOTE = FDETOT(J+1)
              FDETOT(J+1) = FDETOT(J)
              FDETOT(J) = TOTE
```

```
END IF
  122
         CONTINUE
  121 CONTINUE
C
С
       Open the output file and print the title.
C
       READ (62, '(12,A22)', ERR=260) XLINES, TNAME OPEN (69, FILE=TNAME, ERR=260)
       DO 126 I=1, XLINES
         READ (62, '(A100)', ERR=260) TITLE
WRITE (69, '(5X,A100)', ERR=260) TITLE
  126 CONTINUE
       WRITE (69,'(/)')
       WRITE (69,100, ERR=260)
  100 FORMAT ('Diverter', 21x, 'Evapotranspiration', 7x,
                 'Percentage', 4x, 'Consumptive use')
       WRITE (69,'(2X)')
       Write the data to the output file. Keep track of the State and
C
       when it changes, write the subtotals for each State.
       CK = FDNAME(1)(:2)
       WRITE (69,301)
  301 FORMAT (2X, 'ARIZONA')
WRITE (69, '(2X)')
       TOTE = 0.
       TOTP = 0.
       TOTC = 0.
       PTOT = 0.
       DO 131 I=1, FDNUM
         P = FDETOT(I)/ETOT * 100.
         C = P*FDTOT /100.
          TOTE = TOTE + FDETOT(I)
          TOTP = TOTP + P
          PTOT = PTOT + P
          TOTC = TOTC + C
          IF (FDNAME(I)(:2) .NE. CK) THEN
            WRITE (69, '(2X)')
            IF (CK .EQ. 'AZ') WRITE (69,302) TOTE, TOTP, TOTC IF (CK .EQ. 'CA') WRITE (69,303) TOTE, TOTP, TOTC IF (CK .EQ. 'NV') WRITE (69,304) TOTE, TOTP, TOTC
            FORMAT (2X, 'Totals for Arizona
                                                        ',3X,F16.0,F17.2,F16.0,//)
',3X,F16.0,F17.2,F16.0,//)
  302
            FORMAT (2X,'Totals for California FORMAT (2X,'Totals for Nevada
  303
                                                        ',3X,F16.0,F17.2,F16.0,//)
  304
            TOTE = 0.
            TOTP = 0.
            TOTC = 0.
            CK = FDNAME(I)(:2)
            IF (CK .EQ. 'CA' ) WRITE (69,306)
            IF (CK .EQ. 'NV' ) WRITE (69,307)
            IF (CK .EQ. 'US' ) WRITE (69,308)
            FORMAT (2X, 'California', ///)
  306
            FORMAT (2X,'Nevada',///)
  307
  308
            FORMAT (2X, 'Federal Lands', ///)
          END IF
          IF (FDNAME(I)(4:7) .EQ. 'ZZZZ') THEN
FDNAME(I) = CK // 'PHREATOPHYTES'
          END IF
          WRITE (69,309) FDNAME(I), FDETOT(I), P, C
         FORMAT (4X, A20, 9X, F12.0, 9X, F8.2, 4X, F12.0)
  131 CONTINUE
        WRITE (69,305) TOTE, TOTP, TOTC
  305 FORMAT (2X, 'Totals for Federal Lands', 3X, F16.0, F17.2, F16.0, //)
```

```
WRITE (69,133) ETOT, PTOT, FDTOT

133 FORMAT (2X, 'Water-Budget Estimate', 10X, F12.0, 11X, F6.2, 4X, F12.0)
CLOSE (69)
RETURN

C
C
Error messages
C
250 WRITE (*, 251)
251 FORMAT (//, 20X, 'ERROR - WRITING TO FILE 58')
STOP
260 WRITE (*, 261)
261 FORMAT (//, 20X, 'ERROR - READING TITLE')
STOP
END
```

SUBROUTINE HV2DV

Narrative

Subroutine HV2DV calculates consumptive use by vegetation along the Colorado River between Hoover Dam and Davis Dam by using equation 8. This subroutine appends open-water surface area, evaporation rate, evaporated water, domestic use, total precipitation that falls on the vegetated area, yearly precipitation, and the total consumptive use for the reach to the summary table (attachment Q).

Variable List

Name	Common	Description
AREAS(1)	[INDATA]	Open-water surface area within the reach.
DUS(1)	[INDATA]	Domestic water use along the reach.
EVAPS(1)	[INDATA]	Evaporation rate for the reach.
FLOWS(1)	[INDATA]	Measured discharge below Hoover Dam.
FLOWS(2)	[INDATA]	Change in storage in Lake Mohave.
FLOWS(3)	[INDATA]	Measured discharge below Davis Dam.
NETACR		Net acreage of crops along the reach.
PPTS	[PPT1]	Precipitation for each area in the reach.
RCHTS(1)	[INDATA]	Consumptive use by vegetation along the reach.
TRIBS(1)	[INDATA]	Ground-water discharge from springs downstream from Hoover Dam.

Name	Common	Description
TRIBS(2)	[INDATA]	Unmeasured average annual runoff along the reach.
TRIBS(3)	[INDATA]	Ground-water discharge from the Colorado River valley.
TRIBS(4)	[INDATA]	Ground-water discharge from Eldorado Valley.

Flow Chart

Lower Colorado River Accounting System Subroutine HV2DV

Begin subroutine HV2DV

Set the net acreage equal to zero

Set NUMSUB equal to zero for use as a counter

Increment NUMSUB

Colculate the net acreage by adding the corrected vegetation areas for each subreach

Determine if the number of subreaches equals the subreach number

Colculate consumptive use by vegetation for the reach from Hoover Dorn to Davis Dorn by using the water budget. The exact meanings for the variables are listed in the data file in the attachments

Write the area, evaporation rate, evaporated water, domestic use, precipitation, and the yearly precipitation for the reach. This data is written to the general output file

Return to the main program

Program Listing

```
SUBROUTINE HV2DV(*)
0000
        This subroutine calculates consumptive use by vegetation for the
        Colorado River between Hoover Dam and Davis Dam.
        INTEGER*4
                          RCHNUM,
                                         NUMSUB,
                                                      SUBNUM,
                                                                    NUMMR,
                          CORVEG(10)
                                         DUS(20), TRIBS(4
RCHTS(5), NETACR,
       REAL*8
                          FLOWS (30),
                                                      TRIBS (40), AREAS (20),
                          EVAPS (20),
                                                                    PPTS,
                          FDACR(5),
                                         PRECIP(5)
C
       COMMON / INDATA / FLOWS, COMMON / PPT1 / PPTS,
                                                                                RCHTS
                                         TRIBS, AREAS, EVAPS,
                                                                       DUS,
                                         PRECIP
        COMMON / COUNTS / NUMSUB, NUMMR, SUBNUM, RCHNUM, CORVEG
        COMMON / SUM2
                            / FDACR
CC
        Sum the acreage without double-cropped areas.
        NETACR = 0
C
        DO 50 NUMSUB = 1, SUBNUM
          NETACR = NETACR + CORVEG (NUMSUB)
    50 CONTINUE
        FDACR (RCHNUM) = NETACR
C
200
        Calculate consumptive use by vegetation for the Hoover Dam
        to Davis Dam reach.
       RCHTS (RCHNUM) = FLOWS (1) +TRIBS (1) +TRIBS (2) +TRIBS (3) +TRIBS (4) -
                            FLOWS (2) - (AREAS (1) *EVAPS (1)) -FLOWS (3) -DUS (1) +
                             (AREAS (1) +NETACR) *PPTS
C
C
        Write the open-water surface area, evaporation rate, area times
        evaporation rate, domestic use, precipitation, precipitation rate,
        and consumptive use by vegetation for the Hoover Dam to Davis Dam
CCC
        reach to the output file.
        WRITE (58,60,ERR=250)
    60 FORMAT (2X, 'HOOVER TO DAVIS REACH')
        WRITE (58,65,ERR=250) AREAS(1)
WRITE (58,66,ERR=250) EVAPS(1)
        WRITE (58,67, ERR=250) AREAS (1) *EVAPS (1)
        WRITE (58,68,ERR=250) DUS(1)
        WRITE (58,69, ERR=250) (AREAS(1)+NETACR)*PPTS
        WRITE (58,70, ERR=250) PPTS
        WRITE (58,71, ERR=250) RCHTS (RCHNUM)
    WRITE (50, /1, ERR=250) RCHTS (RCHNUM)

65 FORMAT (4X, 'AREAS(1) '18X, F9.2)

66 FORMAT (4X, 'EVAPS(1) '18X, F9.2)

67 FORMAT (4X, 'AREAS(1) *EVAPS(1) '9X, F9.2)

68 FORMAT (4X, 'DUS(1) '20X, F9.2)

69 FORMAT (4X, '(AREAS(1) + NETACR) *PPTS'4X, F9.2)

70 FORMAT (4X, 'PRECIPITATION'13X, F9.2)
    71 FORMAT (4X, 'CONSUMPTIVE USE'8X, F12.2)
        WRITE
                 (*,72) RCHTS (RCHNUM)
    72 FORMAT (10X, 'Consumptive use for Hoover to Davis is ',F12.2)
        RETURN 1
```

```
C Error messages
C 250 WRITE (*,251)
251 FORMAT (//,20X,'ERROR - WRITING TO FILE 58')
STOP
END
```

HV2DV SUBROUTINE

14-5

SUBROUTINE DV2PK

Narrative

Subroutine DV2PK calculates consumptive use by vegetation along the Colorado River between Davis Dam and Parker Dam by using equation 8. This subroutine appends openwater surface area, evaporation rate, evaporated water, domestic use, total precipitation that falls on the vegetated area, yearly precipitation, and the total consumptive use for the reach to the summary table (attachment Q).

Variable List

Name	Common	Description
AREAS(2)	[INDATA]	Open-water surface area within the reach.
BILOUT	[RDATA4]	Inflow from the Bill Williams River, calculated in the BWR subroutine.
DUS(2)	[INDATA]	Domestic water use along the reach.
EVAPS(2)	[INDATA]	Evaporation rate for the reach.
FLOWS(3)	[INDATA]	Measured discharge below Davis Dam.
FLOWS(4)	[INDATA]	Outflow in the Colorado River Aqueduct.
FLOWS(6)	[INDATA]	Outflow in the Central Arizona Project Canal.
FLOWS(7)	[INDATA]	Change in storage in Lake Havasu.
FLOWS(8)	[INDATA]	Measured discharge below Parker Dam.
NETACR		Net acreage of crops along the reach.
PPTS	[PPT1]	Precipitation for each area in the reach.

Name	Common	Description
RCHTS(2)	[INDATA]	Consumptive use by vegetation along the reach.
TRIBS(5)	[INDATA]	Unmeasured average annual runoff from Davis Dam to Topock.
TRIBS(6)	[INDATA]	Unmeasured average annual runoff from Topock to Parker Dam.
TRIBS(7)	[INDATA]	Unmeasured average annual runoff from the Whipple Mountains.
TRIBS(8)	[INDATA]	Unmeasured tributary inflow from Piute Wash.
TRIBS(9)	[INDATA]	Unmeasured tributary inflow from Sacramento Wash.
TRIBS(11)	[INDATA]	Ground-water discharge from Davis Dam to Topock.
TRIBS(12)	[INDATA]	Ground-water discharge from Topock to Parker Dam.
TRIBS(13)	[INDATA]	Ground-water discharge from Piute Valley.
TRIBS(14)	[INDATA]	Ground-water discharge from Sacramento Valley.
TRIBS(15)	[INDATA]	Ground-water discharge from Chemehuevi Valley.

Flow chart

Lower Colorado River Accounting System Subroutine DV2PK

Program Listing

```
SUBROUTINE DV2PK(*)
       This subroutine calculates consumptive use by vegetation
       for the Colorado River between Davis Dam and Parker Dam.
       INTEGER*4
                        RCHNUM,
                                        NUMSUB,
                                                       SUBNUM,
                                                                      NUMMR,
                        CORVEG(10)
       REAL*8
                        FLOWS(30),
                                        DUS (20),
                                                       TRIBS(40),
                                                                      AREAS (20),
                                        RCHTS(5),
                                                                      BILOUT.
                        EVAPS (20),
                                                       PPTS.
                                                       PRECIP(5)
                        NETACR,
                                        FDACR(5),
C
       COMMON / INDATA / FLOWS,
                                       TRIBS,
                                                AREAS,
                                                          EVAPS,
                                                                    DUS,
                                                                             RCHTS
                                                 SUBNUM, RCHNUM, CORVEG
       COMMON / COUNTS / NUMSUB, NUMMR,
       COMMON / PPT1
COMMON / RDAT4
                           / PPTS.
                                       PRECIP
                          / BILOUT
       COMMON / SUM2
                           / FDACR
C
       Sum the acreage without double-cropped areas.
       NETACR = 0
C
       DO 50 NUMSUB = 1, SUBNUM
         NETACR = NETACR + CORVEG(NUMSUB)
   50 CONTINUE
       FDACR (RCHNUM) = NETACR
       Calculate consumptive use by vegetation for the Davis Dam
       to Parker Dam reach.
       RCHTS (RCHNUM) = FLOWS (3) +TRIBS (5) +TRIBS (6) +TRIBS (7) +TRIBS (8) +
                           TRIBS (9) +TRIBS (11) +TRIBS (12) +TRIBS (13) +TRIBS (14) +
                           TRIBS(15)-FLOWS(4)-FLOWS(6)-FLOWS(7)-FLOWS(8)-
                           (AREAS(2)*EVAPS(2))-DUS(2)+BILOUT+
                           (AREAS (2) +NETACR) *PPTS
C
       Write the open-water surface area, evaporation rate, area times
       evaporation rate, domestic use, precipitation, precipitation rate,
       and consumptive use by vegetation for the Davis Dam to Parker Dam
       reach to the output file.
       WRITE (58,60, ERR=250)
   60 FORMAT (2X,'DAVIS TO PARKER REACH')
       WRITE (58,65,ERR=250) AREAS(2)
WRITE (58,66,ERR=250) EVAPS(2)
       WRITE (58,67,ERR=250) AREAS(2)*EVAPS(2)
       WRITE (58,68,ERR=250) DUS(2)
       WRITE (58,69,ERR=250) (ARE WRITE (58,70,ERR=250) PPTS
                                 (AREAS (2) +NETACR) *PPTS
       WRITE (58,71,ERR=250) RCHTS (RCHNUM)
   65 FORMAT (4X, 'AREAS(2)'18X,F9.2)
66 FORMAT (4X, 'EVAPS(2)'18X,F9.2)
67 FORMAT (4X, 'AREAS(2)*EVAPS(2)'9X,F9.2)
68 FORMAT (4X, 'DUS(2)'20X,F9.2)
   69 FORMAT (4X, '(AREAS(2)+NETACR)*PPTS'4X,F9.2)
70 FORMAT (4X, 'PRECIPITATION'13X,F9.2)
71 FORMAT (4X, 'CONSUMPTIVE USE'8X,F12.2)
       WRITE (*,72) RCHTS (RCHNUM)
```

```
72 FORMAT (10X, 'Consumptive use for Davis to Parker is ',F12.2)
    RETURN 1
250 WRITE (*,251)
251 FORMAT (//,20X,'ERROR - WRITING TO FILE 58')
233 WRITE (*,239) 'SUBNUM'
239 FORMAT (//,20X,'ERROR - Reading FILE.DAT - ',A10)
    STOP
240 WRITE (*,249) 'INFILE',J
    STOP
241 WRITE (*,249) 'LOCLAT',J
    STOP
242 WRITE (*,249) 'TFILE',J
    STOP
243 WRITE (*,249) 'PFILE',J
    STOP
249 FORMAT (//,20X,'ERROR-Reading ',A22,' # ',I2)
    END
```

SUBROUTINE PK2IP

Narrative

Subroutine PK2IP calculates consumptive use by vegetation along the Colorado River between Parker Dam and Imperial Dam by using equation 8. This subroutine appends open-water surface area, evaporation rate, evaporated water, domestic use, total precipitation that falls on the vegetated area, yearly precipitation, and the total consumptive use for the reach to the summary table (attachment Q).

Variable List

Name	Common	Description
AREAS(3)	[INDATA]	Open-water surface area within the reach.
DUS(3)	[INDATA]	Domestic water use along the reach.
EVAPS(3)	[INDATA]	Evaporation rate for the reach.
FLOWS(8)	[INDATA]	Measured discharge below Parker Dam.
FLOWS(9)	[INDATA]	Change in storage in Senator Wash Reservoir.
FLOWS(10)	[INDATA]	Measured flow above Imperial Dam.
NETACR		Net acreage of crops along the reach.
PPTS	[PPT1]	Precipitation for each area in the reach.
RCHTS(3)	[INDATA]	Consumptive use by vegetation along the reach.
TRIBS(17)	[INDATA]	Unmeasured average annual runoff from the Whipple Mountains.
TRIBS(18)	[INDATA]	Unmeasured average annual runoff from the Big Maria Mountains.

Name	Common	Description
TRIBS(19)	[INDATA]	Unmeasured average annual runoff from the Palo Verde-Mule Mountains.
TRIBS(20)	[INDATA]	Unmeasured average annual runoff from Dome Rock-Trigo-Chocolate Mountains.
TRIBS(21)	[INDATA]	Unmeasured tributary inflow from Vidal Wash.
TRIBS(22)	[INDATA]	Unmeasured tributary inflow from Bouse Wash.
TRIBS(23)	[INDATA]	Unmeasured tributary inflow from Tyson Wash.
TRIBS(24)	[INDATA]	Unmeasured tributary inflow from McCoy Wash.
TRIBS(25)	[INDATA]	Unmeasured tributary inflow from Milpitas Wash.
TRIBS(26)	[INDATA]	Ground-water discharge from Vidal Wash.
TRIBS(27)	[INDATA]	Ground-water discharge from Bouse Wash.
TRIBS(28)	[INDATA]	Ground-water discharge from Tyson Wash.
TRIBS(29)	[INDATA]	Ground-water discharge from the Chuckwalla Valley.

Flow Chart

Lower Colorado River Accounting System Subroutine PK2IP

Begin subroutine PK2IP

Set the net acreage equal to zero

Set NUMSUB equal to zero for use as a counter

increment NUMSUB

Calculate the net acreage by adding the corrected vegetation areas for each subreach

Determine if the number of subreaches equals the subreach number

Calculate consumptive use by vegetation for the reach from Parker Dam to Imperial Dom by using the water budget. The exact meanings for the variables are listed in the data file in the attachments

Write the area, evaporation rate, evaporated water, domestic use, precipitation, and the yearly precipitation for the reach. This data is written to the general output file

Return to the main program

Program Listing

```
SUBROUTINE PK2IP(*)
CCC
        This subroutine calculates consumptive use for the
        Colorado River between Parker Dam and Imperial Dam.
        INTEGER*4
                          RCHNUM,
                                          NUMSUB,
                                                       SUBNUM,
                                                                      NUMMR,
                          CORVEG(10)
        REAL*8
                          FLOWS (30),
                                          DUS (20),
                                                       TRIBS (40), AREAS (20),
                          EVAPS (20),
                                          RCHTS (5), NETACR,
                                                                      PPTS.
                                          PRECIP(5)
                          FDACR (5),
C
        COMMON / INDATA / FLOWS,
                                          TRIBS, AREAS,
                                                              EVAPS.
                                                                         DUS.
                                                                                  RCHTS
        COMMON / PPT1
                            / PPTS,
                                          PRECIP
        COMMON / COUNTS / NUMSUB, NUMMR, SUBNUM, RCHNUM, CORVEG COMMON / SUM2 / FDACR
                             / FDACR
        Sum the acreage without double-cropped areas.
        NETACR = 0
C
        DO 50 NUMSUB = 1, SUBNUM
          NETACR = NETACR + CORVEG(NUMSUB)
    50 CONTINUE
        FDACR (RCHNUM) = NETACR
        Calculate consumptive use by vegetation for the Parker Dam
        to Imperial Dam reach.
        RCHTS(RCHNUM) = FLOWS(8) + TRIBS(17) + TRIBS(18) + TRIBS(21) + TRIBS(22) +
                       TRIBS (23) +TRIBS (26) +TRIBS (27) +TRIBS (28) +TRIBS (19) +
                       TRIBS(20)+TRIBS(24)+TRIBS(25)+TRIBS(29)-(AREAS(3)*
                       EVAPS (3)) - FLOWS (9) - FLOWS (10) -
                       DUS(3)+(AREAS(3)+NETACR)*PPTS
C
        Write the open-water surface area, evaporation rate, area times
CCC
        evaporation rate, domestic use, precipitation, precipitation rate,
        and consumptive use for the Parker Dam to Imperial Dam reach to the
        output file.
    WRITE (58,60,ERR=250)
60 FORMAT (2X,'PARKER TO IMPERIAL REACH')
        WRITE (58,65,ERR=250) AREAS(3)
        WRITE (58,66,ERR=250) EVAPS(3)
WRITE (58,67,ERR=250) AREAS(3)*EVAPS(3)
        WRITE (58,68, ERR=250) DUS(3)
        WRITE (58,69,ERR=250) (AREAS(3)+NETACR)*PPTS
WRITE (58,70,ERR=250) PPTS
        WRITE (58,71, ERR=250) RCHTS (RCHNUM)
    WRITE (58,/1,ERR=250) KCHTS (KCHNUM)
65 FORMAT (4X,'AREAS(3)'18X,F9.2)
66 FORMAT (4X,'EVAPS(3)'18X,F9.2)
67 FORMAT (4X,'AREAS(3)*EVAPS(3)',9X,F9.2)
68 FORMAT (4X,'DUS(3)'20X,F9.2)
69 FORMAT (4X,'(AREAS(3)+NETACR)*PPTS'4X,F9.2)
70 FORMAT (4X,'PRECIPITATION'13X,F9.2)
71 FORMAT (4X,'CONSUMPTIVE USE'8X,F12.2)
WDITTE (*72) DCHTS (BCHNIM)
                  (*,72) RCHTS (RCHNUM)
        WRITE
    72 FORMAT (10X, 'Consumptive use for Parker to Imperial is ',F12.2)
        RETURN 1
```

```
C Error messages.
C 250 WRITE (*,251)
251 FORMAT (//,20x,'ERROR - WRITING TO FILE 58')
STOP
END
```

PK2IP SUBROUTINE

16-5

SUBROUTINE IP2ML

Narrative

Subroutine IP2ML calculates consumptive use by vegetation along the Colorado River between Imperial Dam and Morelos Dam by using equation 8. This subroutine appends open-water surface area, evaporation rate, evaporated water, domestic use, total precipitation that falls on the vegetated area, yearly precipitation, and the total consumptive use for the reach to the summary table (attachment Q).

Variable List

Name	Common	Description
AREAS(4)	[INDATA]	Open-water surface area within the reach.
DUS(4)	[INDATA]	Domestic water use along the reach.
EVAPS(4)	[INDATA]	Evaporation rate for the reach.
FLOWS(10)	[INDATA]	Measured flow above Imperial Dam.
FLOWS(13)	[INDATA]	Outflow in the All American Canal below Pilot Knob.
FLOWS(15)	[INDATA]	Outflow in the Wellton-Mohawk Canal.
FLOWS(17)	[INDATA]	Inflow from the Gila River near Dome.
FLOWS(18)	[INDATA]	Measured outflow at the Northerly International Boundary.
FLOWS(19)	[INDATA]	Surface-water return flow from Eleven Mile wasteway.
FLOWS(20)	[INDATA]	Surface-water return flow from Cooper wasteway.

Name	Common	Description
FLOWS(21)	[INDATA]	Surface-water return flow from Twenty-One Mile wasteway.
FLOWS(22)	[INDATA]	Surface-water return flow from Main Drain.
FLOWS(23)	[INDATA]	Surface-water return flow from West Main Canal wasteway.
FLOWS(22)	[INDATA]	Surface-water return flow from East Main Canal wasteway.
NETACR		Net acreage of crops along the reach.
PPTS	[PPT1]	Precipitation for each area in the reach.
RCHTS(4)	[INDATA]	Consumptive use by vegetation along the reach.
TRIBS(30)	[INDATA]	Unmeasured average annual runoff along the reach.
TRIBS(31)	[INDATA]	Ground-water discharge near Dome.

Flow chart

Lower Colorado River Accounting System Subroutine IP2ML

Program Listing

```
SUBROUTINE IP2ML(*)
C
C
        This subroutine calculates the consumptive use by vegetation
Č
        for the Colorado River between Imperial Dam and Morelos Dam.
                          RCHNUM,
                                          NUMSUB,
                                                     SUBNUM,
                                                                    NUMMR,
        INTEGER*4
                                                                                    CORVEG(10)
                                         DUS(20), TRIBS(40), AREAS(20),
        REAL*8
                          FLOWS (30),
                                                                                    EVAPS (20),
                                                     NETACR,
                                                                    FDACR (5),
                          RCHTS(5),
                                          PPTS,
                                                                                    PRECIP(5)
C
        COMMON / INDATA / FLOWS, TRIBS, AREAS, EVAPS, DUS, COMMON / COUNTS / NUMSUB, NUMMR, SUBNUM, RCHNUM, CORVEG
                                                                                 RCHTS
        COMMON / PPT1
                            / PPTS.
                                          PRECIP
        COMMON / SUM2
                             / FDACR
C
        Sum the acreage without double-cropped areas.
C
        NETACR = 0
C
        DO 50 NUMSUB = 1, SUBNUM
          NETACR = NETACR + CORVEG(NUMSUB)
    50 CONTINUE
        FDACR(RCHNUM) = NETACR
C
        Calculate consumptive use by vegetation for the Imperial Dam
        to Morelos Dam reach.
        RCHTS(RCHNUM) = FLOWS(10) + FLOWS(17) + TRIBS(31) + TRIBS(30) -
                             FLOWS (13) - (AREAS (4) *EVAPS (4)) -FLOWS (18) -DUS (4) -
                             FLOWS (19) -FLOWS (20) -FLOWS (21) -FLOWS (22) -
                             FLOWS (23) -FLOWS (24) -FLOWS (15) +
                             (AREAS (4) +NETACR) *PPTS
00000
        Write the open-water surface area, evaporation rate, area times
        evaporation rate, domestic use, precipitation, precipitation rate,
        and consumptive use by vegetation for the Imperial Dam to Morelos
        Dam reach to the output file.
        WRITE (58,60, ERR=250)
    60 FORMAT (2X, 'IMPERIAL TO MORELOS REACH')
        WRITE (58,65, ERR=250) AREAS (4)
        WRITE (58,66,ERR=250) EVAPS(4)
WRITE (58,67,ERR=250) AREAS(4)*EVAPS(4)
        WRITE (58,68,ERR=250) DUS(4)
        WRITE (58,69, ERR=250) (AREAS (4) +NETACR) *PPTS
        WRITE (58,70,ERR=250) PPTS
WRITE (58,71,ERR=250) RCHTS(RCHNUM)
    65 FORMAT (4X, 'AREAS(4)'18X,F9.2)
    66 FORMAT (4X, 'AREAS(4)'18X,F9.2)
66 FORMAT (4X, 'EVAPS(4)'18X,F9.2)
67 FORMAT (4X, 'AREAS(4)*EVAPS(4)',9X,F9.2)
68 FORMAT (4X, 'DUS(4)'20X,F9.2)
69 FORMAT (4X, '(AREAS(4)+NETACR)*PPTS'4X,F9.2)
70 FORMAT (4X, 'PRECIPITATION'13X,F9.2)
71 FORMAT (4X, 'CONSUMPTIVE USE'8X,F12.2)
WILLIAM (4, '2) ROUME (PCHNIM)
        WRITE
                 (*,72) RCHTS (RCHNUM)
    72 FORMAT (10X, 'Consumptive use for Imperial to Morelos is ',F12.2)
        RETURN 1
```

```
C Error messages.
C 250 WRITE (*,251)
251 FORMAT (//,20X,'ERROR - WRITING TO FILE 58')
STOP
END
```

IP2ML SUBROUTINE

17-5

SUBROUTINE SORT

Narrative

Subroutine SORT is used to alphabetize the diverter data by State and diverter name. This is done using a temporary array and bubble sort algorithm for speed and simplicity. Once the sort is completed, this subroutine checks for diverters appearing more than once in the data. In this case, the values for the diverter are summed and stored with the diverter and all other references to the diverter are removed.

Variable List

SORT SUBROUTINE

Name	Common	Description
DIVNAM(100)	[VEGDAT]	Array that contains the names of all the diverters in a reach.
DTOTAL(50)	[PHRDAT]	Array that contains the estimates of evapotranspiration for dense phreatophytes for each diverter along the reach.
ETOTAL(50)	[BLCR1]	Array that contains the estimates of evapotranspiration for crops for each diverter along the reach.
F		Flag used to indicate that a swap occurred in the bubble sort routine.
MTOTAL(50)	[PHRDAT]	Array that contains the estimates of evapotranspiration for medium phreatophytes for each diverter along the reach.
NUMDIV(10)	[VEGDAT]	Array that contains the number of diverters for each subreach that make up the main reach.
S(100)		Temporary array that is used for the external bubble sort in the linear sort routine.

18-1

Name	Common	Description
STOTAL(50)	[PHRDAT]	Array that contains the estimates of evapotranspiration for sparse phreatophytes for each diverter along the reach.
TN		Temporary character variable used in the swap routine.
TOT	[VEGDAT]	Total number of diverters along the reach.
TOTALS(100,25)	[BOTH4]	Total evapotranspiration for each crop per diverter along the reach.
TT		Temporary real variable used in the swap routine.

Flow chart

Lower Colorado River Accounting System Subroutine SORT

Begin subroutine SORT

Set I = 0 for counter

Increment I by one

Set work array to counter

Repeat for all diverters

Set K = 0 for counter

increment K by one

Set F = 0 for flag

Set I = 0 for counter

Increment I by one

Check if the diverter name in position S(I) is alphanumerically greater than the next diverter name located in position S(I+1)

Swap the values in the work array to put them in order. T is a temporary variable. Turn flag on by setting $F\,=\,1$

Continued on next page

Lower Colorado River Accounting System Subroutine SORT — Continued

Repeat for all unsorted diverters

If flag is set, quit 'K' loop

Repeat for all diverters except the last one

Set K = 0 for counter

Increment K by one

Set 1 = 0 for counter

Increment I by one

Check If S(I) = K

Swap the actual diverter names in the DIVNAM orray. The TN is a temporary character variable

Swap the evapotranspiration values calculated from the Image-processing data in the ETOTAL array. The TT is a temporary real variable

Continued on next page

Lower Colorado River Accounting System Subroutine SORT — Continued

Lower Colorado River Accounting System Subroutine SORT — Continued

Lower Colorado River Accounting System Subroutine SORT — Continued

Increment J by one

Move each diverter name and variables associated with it one level down in the array, filling the blank left by the double-diverter entry

Set K = 0 for counter

Increment K by one

Move the crop acreage values down one slot in the array to account for the diverters that are listed twice

Repeat for each crop

Repeat for all diverters less one

If I < TOT-1, go back and check if the diverter is listed again. If I > TOT-1, get out of the consolidation loop "I"

Clear the last diverter name in the array because it has been reassigned to one less

Reduce the total number of diverters to occount for the double listing

Repeat for all diverters less one

Return to main program

Program Listing

```
SUBROUTINE SORT
CCCC
       This subroutine uses a linear sort to alphabetize the diverter names.
       The subroutine then compresses the diverter names and data if the
       diverter name appears more than once.
       CHARACTER*40
                        DIVNAM(100), TN
       CHARACTER*20
                        VEGNAM (50)
                        NUMDIV(10),
       INTEGER*4
                                       NUMVEG,
                                                      TOT,
                        LOCLAT(10),
MTOTAL(50),
                                       S(100), TOTALS(100,2
STOTAL(50), ETOTAL(100),
                                                      TOTALS (100, 25),
                                                                           YEAR,
                                                                           TT,
                        DTOTAL (50),
                                       CORVEG(10)
C
       COMMON / VEGDAT / DIVNAM, VEGNAM, NUMVEG, NUMDIV, TOT
       COMMON / BOTH4 / TOTALS
       COMMON / PHRDAT / DTOTAL, MTOTAL, STOTAL
COMMON / BLCR1 / LOCLAT, ETOTAL, YEAR
       Set up the dummy array.
       DO 400 I=1, TOT
            S(I) = I
   400 CONTINUE
C
С
       Sort the dummy array according to the diverter names.
       DO 130 K=1, TOT-1
       F = 0
         DO 140 I=1, TOT-K
            IF (DIVNAM(S(I)) .GT. DIVNAM(S(I+1))) THEN
              T = S(I)
              S(I) = S(I+1)
              S(I+1) = T
              F = 1
            END IF
  140
         CONTINUE
          IF (F .LT. 1) GOTO 150
  130 CONTINUE
C
C
       Use the dummy array to sort the data in one pass.
  150 DO 160 K=1, TOT-1
DO 170 I=K+1, TOT
            IF (S(I) .EQ. K) THEN
              TN = DIVNAM(S(I))
              \begin{array}{ll} \text{DIVNAM}(S(I)) &=& \text{DIVNAM}(S(K)) \\ \text{DIVNAM}(S(K)) &=& \text{TN} \end{array}
              TT = ETOTAL(S(I))
              ETOTAL(S(I)) = ETOTAL(S(K))
              ETOTAL(S(K)) = TT
              TT = STOTAL(S(I))
              STOTAL(S(I)) = STOTAL(S(K))

STOTAL(S(K)) = TT
              TT = DTOTAL(S(I))
              DTOTAL(S(I)) = DTOTAL(S(K))
              DTOTAL(S(K)) = TT
              TT = MTOTAL(S(I))
              MTOTAL(S(I)) = MTOTAL(S(K))
```

```
MTOTAL(S(K)) = TT
              DO 180 L=1, NUMVEG
                 TT = TOTALS(S(I), L)

TOTALS(S(I), L) = TOTALS(S(K), L)

TOTALS(S(K), L) = TT
  180
              CONTINUE
              T = S(I)
              S(I) = S(K)

S(K) = T
            END IF
  170
          CONTINUE
  160 CONTINUE
CCC
       If two diverters are the same, add the values and remove
       duplications.
       DO 30 I=1,TOT-1
   10
          IF (DIVNAM(I) .EQ. DIVNAM(I+1)) THEN
            ETOTAL(I) = ETOTAL(I) + ETOTAL(I+1)

DTOTAL(I) = DTOTAL(I) + DTOTAL(I+1)
            MTOTAL(I) = MTOTAL(I) + MTOTAL(I+1)
            STOTAL(I) = STOTAL(I) + STOTAL(I+1)
DO 20 J=1,NUMVEG
               TOTALS(I,J) = TOTALS(I,J) + TOTALS(I+1,J)
    20
            CONTINUE
            DO 40 J=I+1, TOT-1
              DIVNAM(J) = DIVNAM(J+1)
               ETOTAL(J) = ETOTAL(J+1)
              DTOTAL(J) = DTOTAL(J+1)
              MTOTAL(J) = MTOTAL(J+1)
               STOTAL(J) = STOTAL(J+1)
              DO 50 K=1, NUMVEG
                 TOTALS(J,K) = TOTALS(J+1,K)
              CONTINUE
    50
    40
            CONTINUE
            IF (I .GT. TOT-1) GOTO 32
DIVNAM(TOT) = '
            TOT = TOT-1
            GOTO 10
          END IF
    30 CONTINUE
    32 \text{ TOTACR} = 0
       RETURN
       STOP
       END
```

SORT SUBROUTINE

18-9

SUBROUTINE TABLE1

Narrative

Subroutine TABLE1 produces a table for each reach showing total vegetation acreage by type for each diverter along the reach (an example is attachment M). The name and title for the table are read from a title data file (attachments K).

Variable List

Name	Common	Description
CORVEG(10)	[COUNTS]	Vegetation acreage less the double-cropped area for each reach.
DIVNAM(100)	[VEGDAT]	Diverter names for each reach along the lower Colorado River.
NETVEG		Total area of crops not counting double-cropped classification.
NLINES		Number of lines in the title, read from a data file and written to the output file.
NUMVEG	[VEGDAT]	Number of vegetation types read from the image- processing input data files.
SUBNUM	[COUNTS]	Number of subreaches per reach.
ТЕМРІ		Variable used to hold the sum of all the crop areas.
TEMP2(25)		Array to hold the sum of the crop areas by diverter.
TFNAME		Character variable used to store the name of the output file.

Name	Common	Description
TITLE		Character array used to hold the title for the table.
TOT		Total number of diverters in the reach.
TOTACR		Total area covered by crops.
TOTALS(100,25)	[BOTH4]	Acreage for each crop and phreatophyte-density type by diverter.
VEGNAM(50)	[VEGDAT]	Vegetation-type names read from the image- processing input data files used to compare the vegetation-type names read from the vegetation water-use coefficient input data file.

Flow chart

Lower Colorado River Accounting System Subroutine TABLE1

Begin Subroutine TABLE1

Open DATFIL(7) for input

Read number of title lines and title data file name

Open table data file for input

Set I ta zero as counter

increment I

Read title line from DATFIL(7)

Write title to table data file

Repeat for all title lines

Write two blank lines

Set the next vegetation vector after the last vegetation name ta ' TOTAL'

Continued on next page

Lower Colorado River Accounting System Subroutine TABLE1 — Continued

Write all the vegetation names across the top including TOTAL

Draw a line across the page

Sort the data by state and diverter name

Set I to zero as counter

Increment I

Clear TEMP2 vector for storing totals

Repeat for all vegetations and total

Clear TOTALR variable

Set I to zero as counter

increment i

Clear TEMP1 variable

Continued on next page

Lower Colorado River Accounting System Subroutine TABLE1 — Continued

Lower Colorado River Accounting System Subroutine TABLE1 — Continued

Lower Colorado River Accounting System Subroutine TABLE1 — Continued

Program Listing

```
SUBROUTINE TABLE1
         This subroutine reads the titles and the output file names from
000000
        the input file DATFIL(7) and produces a table with the following information: a title for the table, vegetation names, diverter names, and areas of each vegetation type, in acres, per diverter
         for each reach.
         CHARACTER*100 TITLE
         CHARACTER*40 DIVNAM(100)
                             TFNAME, DATFIL(15)
VEGNAM(50)
         CHARACTER*22
         CHARACTER*20
                             NUMDIV(10), NUMVEG,
                                                                   FLAG(40),
                                                                                     NLINES.
         INTEGER*4
                                                TOT,
NETVEG
                             NUMSUB,
                                                                   NUMMR,
                                                                                     SUBNUM,
                              TOTACR,
                                                                   LOCLAT(10), YEAR,
                             RCHNUM, TEMP2(25), TEMP1, TOTALS(100, CORVEG(10), ETOTAL(100), STOTAL(50), DTOTAL(50),
                                                                                     TOTALS(100, 25),
                             MTOTAL (50)
C
        COMMON / VEGDAT / DIVNAM, VEGNAM, NUMVEG, NUMDIV, TOT COMMON / COUNTS / NUMSUB, NUMMR, SUBNUM, RCHNUM, CORVEG COMMON / BOTH4 / TOTALS COMMON / PHRDAT / DTOTAL, MTOTAL, STOTAL COMMON / BLCR1 / LOCLAT, ETOTAL, YEAR COMMON / IDATA / DATFIL
C
         Read in the table titles and output file names.
         OPEN (61, FILE=DATFIL(7), STATUS='OLD', ERR=500)
C
         READ (61, '(12, A22)', ERR=510) NLINES, TFNAME
        OPEN (17, FILE TTNAME, ERR=530)
DO 100 I = 1, NLINES
READ (61, (A100), ERR=520)
            READ (61, '(A100)', ERR=520) TITLE WRITE(17, '(5X, A100)', ERR=540) TITLE
   100 CONTINUE
         WRITE (17,66,ERR=540)
WRITE (17,66,ERR=540)
    66 FORMAT (2X)
VEGNAM (NUMVEG+1) = '
                                         TOTAL'
   WRITE (17,111,ERR=560)(VEGNAM(J), J=1,NUMVEG+1)
111 FORMAT ('DIVERTER',18X,20A9)
WRITE (17,'(132A1)',ERR=550)('_', J=1,132)
C
         Sort the data.
         CALL SORT
c
         Write the diverter name and acreage, which corresponds to the
C
         respective vegetation types.
         DO 67 I=1, NUMVEG+1
            TEMP2(I) = 0
    67 CONTINUE
         TOTACR = 0
         DO 190 I=1, TOT
TEMP1 = 0
DO 200 K=1, NUMVEG
               TEMP1 = TEMP1+TOTALS(I,K)
TEMP2(K) = TEMP2(K)+TOTALS(I,K)
                           = TOTACR + TOTALS(I,K)
              TOTACR
   200
           CONTINUE
            TEMP2 (NUMVEG+1) = TEMP2 (NUMVEG+1)+TEMP1
            WRITE (17,112,ERR=570) DIVNAM(I), (TOTALS(I,MM), MM=1, NUMVEG),
                                              TEMP1
   112 FORMAT (4X, A20, 2019, 112)
   190 CONTINUE
   WRITE (17,113,ERR=570) (TEMP2(M),M=1,NUMVEG+1)
113 FORMAT (/,4X,'TOTAL',15X,2019)
         Write total acreage and net acreage to the output file.
         WRITE (17,66, ERR=570)
```

```
WRITE (17,66, ERR=570)
WRITE (17,118,ERR=570) TOTACR

118 FORMAT ('Total vegetated area',6X,112)
WRITE (17,66, ERR=570)
NETVEG = 0
DO 210 I=1,SUBNUM
NETVEG = NETVEG + CORVEG(I)

210 CONTINUE
  210 CONTINUE
  WRITE (17,149,ERR=570) NETVEG

149 FORMAT ('Net vegetated area',8x,I12)

CLOSE (17)

CLOSE (16)
         RETURN
         Error messages.
Č
500
        WRITE (*,501) DATFIL(7)
FORMAT (//,2X,'ERROR - OPENING ',A22)
 501
         STOP
        WRITE (*,511) DATFIL(7)
FORMAT (//,2x,'error - READING TITLE INFO FROM ',A22)
 511
         STOP
        WRITE (*,521) DATFIL(7)
FORMAT (//,2X,'ERROR - READING IN TITLES FROM ',A22)
         STOP
        WRITE (*,531) TFNAME
FORMAT (//,2X,'ERROR - OPENING ',A22)
 530
        WRITE (*,541)
 540
        FORMAT (//,20x, 'ERROR-READING IN DATA4')
 541
         STOP
        WRITE (*,551)
        FORMAT (//,20x,'ERROR-READING IN DATA5')
 551
         STOP
 560
        WRITE (*,561)
        FORMAT (//,20x,'ERROR-READING IN DATA6')
         STOP
        WRITE (*,571)
FORMAT (//,20X,'ERROR-WRITING IN DATA7')
 570
         END
```

SUBROUTINE TABLE2

Narrative

Subroutine TABLE2 produces tables that show evapotranspiration, percentage, and consumptive use by diverter and are totaled by State (attachments O). The subroutine first adds all the estimates of evapotranspiration for the reach and uses the total to calculate the percentage for each diverter. This percentage is then multiplied by consumptive use by vegetation calculated with the water budget to apportion consumptive use by vegetation among the diverters.

Variable List

Name	Common	Description		
CN1(4)		Array of the State initials for comparisons.		
CN2(4)		Array of the complete name of the State for output.		
CN3(4)		Array of the State total label for output.		
СО		Temporary integer value for consumptive use by diverter.		
DIVNAM(100)	[VEGDAT]	Diverter names for each reach along the lower Colorado River.		
DTOTAL(50)	[PHRDAT]	Integer value for the total evapotranspiration for dense phreatophytes.		
ET		Temporary integer value of the REAL evapotranspiration value.		
ETOTAL(100)	[BLCR1]	Integer value for total evapotranspiration by crops for each of the reaches.		
FLG		Indicates the next diverter is in a new State.		

Name	Common	Description
GCO		Grand total of consumptive use along the reach.
GET		Grand total of evapotranspiration along the reach.
MTOTAL(50)	[PHRDAT]	Integer value for total evapotranspiration for medium phreatophytes.
PCO		Temporary integer value for consumptive use by phreatophytes.
PET		Temporary integer value for percentage of evapotranspiration by phreatophytes.
PTOT(4)		Array of the total evapotranspiration for phreatophytes.
RCHNUM	[COUNTS]	Number of the reach currently being processed.
RCHTS(5)	[INDATA]	Array that contains the total consumptive use for each reach along the lower Colorado River calculated with the water budget.
RTOT		Total evapotranspiration for the reach used for percentage calculations.
STOTAL(50)	[PHRDAT]	Integer value for total evapotranspiration for sparse phreatophytes.
TANAME		Name of the output file.
тсо		Total consumptive use for each State.
ТЕТ		Total percentage of evapotranspiration for each State.

Name	Common	Description			
TITLE		Character variable used to transfer the title strings from the input data file to the output table file.			
тот		Total number of diverters along the reach.			
TOTAL(4)		Array that contains total evapotranspiration, including phreatophytes, for each State.			
тто		Total evapotranspiration for each State.			
XLINES		Number of title strings for the table.			

Flow chart

Lower Colorado River Accounting System Subroutine TABLE2

Lower Colorado River Accounting System Subroutine TABLE2 — Continued

Lower Colorado River Accounting System Subroutine TABLE2 — Continued

Lower Colorado River Accounting System Subroutine TABLE2 — Continued

Check if the diverter is Federal Lands

Sum evapatronspiration by crops and phreatophytes into the ETOTAL array

Repeat for all diverters

Set J = 0 for counter

increment J by one

Add up the grand total for all States

Repeat for each State

Clear the variables used for storing State and grand totals for percentage of evapatranspiration and prorated consumptive use

Set I = 0 for counter

increment I by one

Lower Colorado River Accounting System Subroutine TABLE2 — Continued

Lower Colorado River Accounting System Subroutine TABLE2 — Continued

Lower Colorado River Accounting System Subroutine TABLE2 — Continued

Write the totals heading, evapotronspiration, and percentages for the State

Sum the grand total variables and clear the State variables for the next State

Repeat if the flag is set to 2

Set FLG = 1 for first poss test

Repeat for all diverters

Write the grand total label and grand totals for the evapotronspiration and percentage to the table

Close the table file

Rsturn to the main program

Program Listing

```
SUBROUTINE TABLE?
             This subroutine reads the titles and the output file names from the CONUSE.TIT file and creates an output table
             consisting of the following: a title, headings
EVAPOTRANSPIRATION, PERCENTAGE, and CONSUMPTIVE USE, and lists
evapotranspiration, percentage of evapotranspiration,
and consumptive use by diverters in Arizona, California, and
Nevada associated with each reach.
          CHARACTER*100 TITLE(10)
          CHARACTER*40 DIVNAM(100), FDNAME(250)
          CHARACTER*22
                                  TANAME.
                                                           INFILE(10)
                                  VEGNAM (50)
          CHARACTER*20
                                  CN2(4),
CN1(4)
           CHARACTER*24
                                                           CN3 (4)
           CHARACTER*2
                                                         XLINES.
                                                                                NUMVEG
          INTEGER * 4
                                  LOCLAT(10),
                                                                                                      TOT.
                                                         YEAR,
                                                                                NUMDIV(10), RCHNUM,
                                  FLG.
                                  NUMSUB,
                                                         NUMMR,
                                                                                 SUBNUM,
                                                                                                     FDNUM,
                                   ETOTAL(100), CORVEG(10),
                                                                                 STOTAL (50), TTO,
                                   MTOTAL(50), DTOTAL(50),
                                                                                GCO,
TOTAL(4),
                                                                                                     RTOT
                                   PTO.
                                                         co.
                                                                                                     PTOT(4),
                                  PCO,
                                                         TCO,
                                                                                 FDETOT (250)
          REAL*8
                                  EVAPS(20),
                                                         FLOWS(30),
                                                                                 TRIBS(40), DUS(20),
                                                         GET,
RCHTS(5)
                                   AREAS(20),
                                                                                ET,
                                                                                                     PET,
                                   TET.
C
          COMMON / VEGDAT / DIVNAM, VEGNAM, NUMVEG, NUMDIV, TOT COMMON / INDATA / FLOWS, TRIBS, AREAS, EVAPS, DUS, RCHTS COMMON / BLCR1 / LOCLAT, ETOTAL, YEAR
          COMMON / BHCRI / LOCLAT, ETOTAL, YEAR
COMMON / PHRDAT / DTOTAL, MTOTAL, STOTAL
COMMON / COUNTS / NUMSUB, NUMMR, SUBNUM, RCHNUM, CORVEG
COMMON / LUMP1 / INFILE
COMMON / SUMMRY / FDNAME, FDETOT, FDNUM
          Calculate and sum evapotranspiration, percentage of evapotranspiration, and consumptive use of each State's diverters for each reach. Also does the same for each State's phreatophytes.
          CN2(1) = 'Arizona
CN3(1) = 'Totals for Arizona
CN1(2) = 'CA'
          CN2(2) = 'California
CN3(2) = 'Totals for California
CN1(3) = 'NV'
          CN2(3) = 'Nevada
CN3(3) = 'Totals for Nevada
          CN1(4) = 'US'
CN2(4) = 'Federal Lands '
CN3(4) = 'Totals for Federal Lands'
           Read the titles from the input file and write to the output file.
           READ (62, '(12, A22)', ERR= 80) XLINES, TANAME
          OPEN (17, FILE= TANAME, ERR=400)
DO 45 I=1, XLINES
READ (62,'(A100)', ERR= 80) TITLE(I)
WRITE (17,'(5X,A100)',ERR=400) TITLE(I)
     45 CONTINUE
   45 CONTINUE
WRITE (17,600)
WRITE (17,600)
600 FORMAT (2X)
WRITE (17,100,ERR=80)
   100 FORMAT ('Diverter',21X,'Evapotranspiration',7X,

* 'Percentage',4X,'Consumptive use')
          WRITE (17,600)
           Remove any diverter that is flagged with an '*' in the third
           column.
          DO 666 I=1, TOT
              IF (DIVNAM(I)(3:3) .EQ. '*') THEN
```

```
TOT = TOT-1
DO 667 J=I,TOT
DIVNAM(J) = DIVNAM(J+1)
ETOTAL(J) = ETOTAL(J+1)
                      STOTAL(J) = STOTAL(J+1)
                     MTOTAL(J) = MTOTAL(J+1)

DTOTAL(J) = DTOTAL(J+1)
   667
                 CONTINUE
              END IF
   666 CONTINUE
           Clear the TOTAL and PTOT arrays for calculations.
          DO 5 J=1,4
TOTAL(J) = 0.0
PTOT(J) = 0.0
       5 CONTINUE
          RTOT = 0
          Sum evapotranspiration for each diverter for each State and sum a grand total for the reach.
          DO 10 I=1, TOT
DO 15 J=1,4
                  IF (DIVNAM(I)(:2) .EQ. CN1(J)) GOTO 16
              CONTINUE
              TOTAL(J) = TOTAL(J)+ ETOTAL(I)+ STOTAL(I)+ MTOTAL(I)+DTOTAL(I)

PTOT(J) = PTOT(J) + STOTAL(I) + MTOTAL(I) + DTOTAL(I)

IF (CN1(J) .EQ. 'US') THEN

ETOTAL(I) = ETOTAL(I) + STOTAL(I) + MTOTAL(I) + DTOTAL(I)
              END IF
     10 CONTINUE
     RTOT = TOTAL(J) + RTOT
20 CONTINUE
           DO 20 J=1,4
          FLG = 1
GCO = 0.0
GET = 0.0
           TET = 0.0
C
          DO 250 I = 1, TOT

IF (FIG .EQ. 1) THEN

DO 25 J=1,4

IF (DIVNAM(I)(:2) .EQ. CN1(J)) GOTO 26
      24
      25
                  CONTINUE
                  WRITE (*,29)
FORMAT (2X,'I CAN NOT MATCH THE DIVERTER STATE')
      29
                  STOP
     26
                  FLG = 0
                  WRITE (17,106,ERR=80) CN2(J)
FORMAT (2X,A24,/)
   106
              END IF
C
              Calculate the percentage of evapotranspiration and consumptive use
              for each diverter and sum for each State.
              IF (DIVNAM(I)(:2) .EQ. CN1(J)) THEN
ET = (ETOTAL(I)*100.)/(RTOT*1.)
CO = RCHTS(RCHNUM) * ET / 100.
                  CO = RCHTS(RCHNUM) * ET / 100.
TTO = TTO + ETOTAL(I)
TCO = TCO + CO
TET = TET + ET
WRITE (17, 70, ERR=80) DIVNAM(I), ETOTAL(I), ET, CO
FORMAT (4X,A20,9X,I12,9X,F8.2,7X,I12)
FINUM = FINUM+1
FINUM+(FINUM) - DIVNAM(I)
      70
                  FDNAME (FDNUM) = DIVNAM(I)
FDETOT (FDNUM) = ETOTAL(I)
                  IF (I .NE. TOT) GOTO 250
IF (I .EQ. TOT) FLG = 2
              END IF
C
              IF (CN1(J) .NE. 'US') THEN
  PET = (PTOT(J)*100.)/(RTOT*1.)
  PCO = RCHTS(RCHNUM) * PET / 100.
                  TET = TET + PET
```

```
TCO = TCO + PCO
TTO = TTO + PTOT(J)
WRITE (17,470, ERR=402) PTOT(J), PET, PCO
FORMAT (4X, 'PHREATOPHYTES',16X,112,P17.2,119)
FDNUM = FINUM+1
FDNAME(FDNUM) = CN1(J) // ' // 'PHREATOPHYTES'
FDETOT(FDNUM) = PTOT(J)
470
              END IF
WRITE (17,471, ERR=402) CN3(J), TTO, TET, TCO
FORMAT (1X,/,2X,A24,3X,I16,F17.2,I19,//)
471
             GCO = GCO + TCO

GET = GET + TET

TTO = 0.0

TCO = 0.0

TET = 0.0

IF (FLG .EQ. 2) GOTO 250

FLG = 1
              GOTO 24
GOTO 24
250 CONTINUE
WRITE (17,75,ERR=80) RTOT, GET, GCO
75 FORMAT ('Reach totals',21X,I12,11X,F6.2,7X,I12)
WRITE (17,600)
IRCHTS = INT(RCHTS(RCHNUM))
WRITE (17,450) IRCHTS
450 FORMAT ('Water-Budget Estimate ',43X,I15)
CLOSE (17)
RETURN
          Error messages.
200 WRITE (*,201)
201 FORMAT (//,20X,'ERROR - Reading input files')
         STOP
   80 WRITE(*,81)
   81 FORMAT (//,20X,'ERROR - Reading TANAME')
          STOP
 400 WRITE(*,401)
401 FORMAT (//,20x,'ERROR - Writing TANAME')
          STOP
 402 WRITE (*,403)
403 FORMAT (//,20X,'ERROR - WRITING TO TABLE 2')
          STOP
```

SUBROUTINE TABLE3

Narrative

Subroutine TABLE3 produces a table that shows the vegetation types in each reach, monthly water-use rates for each vegetation type, and the annual water-use rate for each type (attachment L). All of the values used in this subroutine are calculated in the BC subroutine.

Variable List

Name	Common	Description			
INFILE(10)	[LUMP1]	Name of the image-processing input file for each subreach in a reach.			
MWUR(5,25,12)	[WRATES]	Monthly water-use rates calculated for vegetation types for each reach along the lower Colorado River.			
NUMSUB	[COUNTS]	Number of subreaches read from the primary input data file.			
NUMVEG	[VEGDAT]	Number of vegetation types read from the image- processing input data files.			
SUBNUM	[COUNTS]	Number of subreaches per reach.			
TFILE(10)	[SDATA]	ASCII input data file that contains the temperature data for selected stations along the lower Colorado River.			
VEGNAM(50)	[VEGDAT]	Vegetation-type names read from the image- processing input data files used to compare the vegetation-type names read from the vegetation- growth coefficient input data file.			
WUR(5,25)	[WRATES]	Annual water-use rates summed for each vegetation type by reach along the lower Colorado River.			

Flow chart

Lower Colorado River Accounting System Subroutine TABLE3

Lower Colorado River Accounting System Subroutine TABLE3 — Continued

Write the vegetation name and the corresponding monthly water—use rate to the output file

Repeat for all vegetation types

Repeat for all subreaches

Return to main program

Program Listing

```
SUBROUTINE TABLE3
         This subroutine is used to read the titles from the
0000000
         data file and produces an output file in table form containing the following: a title, a heading with a three-letter abbreviation of the twelve months, a list of each vegetation type, and the monthly water-use rates of each
         vegetation type.
         CHARACTER*80 TITLE(10)
CHARACTER*40 DIVNAM(100)
         CHARACTER*22
                               TFILE(10),
                                                 PFILE(10),
                                                                         INFILE(10)
         CHARACTER*20
                               VEGNAM(50)
                                                                                               NUMMR
         INTEGER*4
                               YLINES.
                                                 NUMSUB.
                                                                         RCHNUM.
                                                 NUMDIV(10),
                               NUMVEG,
                                                                                               NUMCRP,
                                                                         SUBNUM.
                                                  CORVEG(10)
                               TOT,
                               WUR(5,25),
                                                 MWUR(5, 25, 12)
         REAL*8
C
         COMMON / VEGDAT / DIVNAM, VEGNAM, NUMVEG, NUMDIV, TOT
         COMMON / WRATES / MWUR, WUR
COMMON / COUNTS / NUMSUB, NUMMR, SUBNUM, RCHNUM, CORVEG
COMMON / LUMP1 / INFILE
COMMON / SDATA / TFILE, PFILE
0000
         Skip two lines in the output file.
         WRITE (65,115,ERR=90)
WRITE (65,115,ERR=90)
   115 FORMAT (2X)
000
         Write the vegetation names and their corresponding monthly
         water-use rates to the output file.
         DO 10 NUMSUB=1, SUBNUM
            FLAG = 0
DO 20 I=1, NUMSUB-1
               IF (TFILE(I) .EQ. TFILE(NUMSUB)) FLAG =1
            CONTINUE
     20
               DRTINUE

F (FLAG .EQ. 0) THEN

WRITE (65,50,ERR=90) INFILE(NUMSUB), TFILE(NUMSUB)

FORMAT (2X,A22,2X,'-',2X,A22)

DO 30 J=1, NUMVEG

WRITE (65,100,ERR=90) VEGNAM(J), (MWUR(NUMSUB,J,I),

I=1,12), WUR(NUMSUB,J)

FORMAT (4X,A10,3X,12F6.2,2X,F6.2)
     50
   100
     30
               CONTINUE
               WRITE (65,115,ERR=90)
            END IF
     10 CONTINUE
         RETURN
         Error Messages
     80 WRITE (*,81)
81 FORMAT (//,20X,'ERROR - Reading WUTITLE.DATA')
     90 WRITE (*,91)
     91 FORMAT (//,20%,'ERROR - Writing to WUNAME')
         STOP
```

SUBROUTINE TABLE4

Narrative

Subroutine TABLEA produces a table for the Bill Williams River that shows evapotranspiration and percentage for each diverter (attachment N). The subroutine first adds all the estimates of evapotranspiration for the reach and uses the total to calculate the percentage for each diverter. This routine is different than TABLE2 in that it does not add the diverters to the master diverter list. This table includes only output from the BWR subroutine.

Variable List

Name	Common	Description
CN1(4)		Array of the State initials for comparisons.
CN2(4)		Array of the complete name of the State for output.
CN3(4)		Array of the State total line for output.
СО		Temporary integer value for consumptive use for a diverter.
DIVNAM(100)	[VEGDAT]	Diverter names for each reach along the lower Colorado River.
DTOTAL(50)	[PHRDAT]	Integer value for the total evapotranspiration for dense phreatophytes.
ET		Temporary integer value of the REAL evapotranspiration value.
ETOTAL(100)	[BLCR1]	Integer value for the total evapotranspiration by crops for each of the reaches.
FLG		Indicates the next diverter is in a new State.

Name	Common	Description
GCO		Grand total of consumptive use along the reach.
GET		Grand total of evapotranspiration along the reach.
MTOTAL(50)	[PHRDAT]	Integer value for total evapotranspiration for medium phreatophytes.
PCO		Temporary integer value for consumptive use by phreatophytes.
PET		Temporary integer value for percentage of evapotranspiration by phreatophytes.
PTOT(4)		Array of total evapotranspiration for phreatophytes.
RCHNUM	[COUNTS]	Number of the reach currently being processed.
RCHTS(5)	[INDATA]	Array that contains the total consumptive use for each reach along the lower Colorado River calculated with the water budget.
RTOT		Total evapotranspiration for reach used for percentage calculations.
STOTAL(50)	[PHRDAT]	Integer value for total evapotranspiration for sparse phreatophytes.
TANAME		Name of the output file.
тсо		Total consumptive use for each State.
ТЕТ		Total percentage of evapotranspiration for each State.
TITLE		Character variable used to transfer the title strings from the input data file to the output table file.

Name	Common	Description
тот		Total number of diverters along the reach.
TOTAL(4)		Array that contains total evapotranspiration, including phreatophytes, for each State.
TTO		Total evapotranspiration for each State.
XLINES		Number of title strings for the table.

Flow chart

Lower Colorado River Accounting System Subroutine TABLE4

Lower Colorado River Accounting System Subroutine TABLE4 — Continued

Set 1 = 0 for counter

Increment I by one

Check if diverter is flagged by an 's' in the third position for deletion

Decrease the number of diverters by one

Set J = 0 for counter

Increment J by one

Remove any diverter that is flagged with an 's' in the third column of the name by moving all diverters and associated data in the array up one stat

Repeat for all diverters

Repeat for all diverters

Set 1 = 0 for counter

increment I by one

Lower Colorado River Accounting System Subroutine TABLE4 — Continued

Lower Colorado River Accounting System Subroutine TABLE4 — Continued

Check If the diverter is Federal Lands

Sum evapatranspiration by crops and phreatophytes into the ETOTAL array

Repeat for all diverters

Set J = 0 for counter

Increment J by one

Add up the grand total for all States

Repeat for each State

Clear the variables used for storing State and grand totals for percentage of evapotranspiration and prorated consumptive use

Set I = 0 for counter

Increment I by one

Lower Colorado River Accounting System Subroutine TABLE4 — Continued

Check if this is the first pass for this State

Set J to zero as counter

Increment J

Repeat for all diverters

Repeat for each State

Write an error message indicating that the diverter State code is not correct

Stop program execution

Reset the flog for first pass

Write the State name to the table

Check if diverter is in the current State

Lower Colorado River Accounting System Subroutine TABLE4 — Continued

Lower Colorado River Accounting System Subroutine TABLE4 — Continued

Write the totals heading, evapotronspiration, and percentage for the State

Sum the grand total variables and clear the State variable for the next State

Repeat if the flag is set to 2

Set FLG = 1 for first pass test.

Repeat for all diverters

Write the grand total label and grand totals for the evapotronspiration and percentage to the table

Close the table file

Return to the main program

Program Listing

```
SUBROUTINE TABLE4
             This subroutine reads the titles and the output file names from the CONUSE.TIT file and creates an output table consisting of the following: a title, headings EVAPOTRANSPIRATION and PERCENTAGE, the Arizona diverter's evapotranspiration and
CCC
             percentage of evapotranspiration associated with the Bill Williams
River. This is different than TABLE 2 in that it will not add
the diverters to the master diverter list. This table included only
0000
              the output from the BWR subroutine.
          CHARACTER*100 TITLE(10)
CHARACTER*40 DIVNAM(100), FDNAME(250)
          CHARACTER*22
                                  TANAME,
                                                           INFILE(10)
                                  VEGNAM (50)
           CHARACTER*20
                                  CN2(4),
CN1(4)
           CHARACTER*24
                                                           CN3 (4)
          CHARACTER*2
           INTEGER*4
                                  LOCLAT(10), XLINES,
                                                                                NUMVEG,
                                                         YEAR.
                                                                                NUMDIV(10), RCHNUM,
                                  FLG,
                                  NUMSUB.
                                                         NUMMR.
                                                                                SUBNUM.
                                                                                                     FDNUM.
                                   ETOTAL(100), CORVEG(10),
                                                                                STOTAL (50), TTO,
                                                         DTOTAL (50),
                                   MTOTAL (50),
                                                                                GCO,
                                                                                                      RTOT
                                                         œ,
                                                                                TOTAL (4)
                                   PTO,
                                                                                                      PTOT(4),
                                                                                FDETOT(250)
                                  PCO,
EVAPS(20),
                                                         TCO.
                                                         FLOWS (30),
          REAL*8
                                                                                TRIBS(40), DUS(20),
                                   AREAS(20),
                                                         GET,
                                                                                                      PET.
                                   TET,
                                                         RCHTS(5)
C
         COMMON / VEGDAT / DIVNAM, VEGNAM, NUMVEG, NUMDIV, TOT
COMMON / INDATA / FLOWS, TRIBS, AREAS, EVAPS, DUS, RCHTS
COMMON / BLCR1 / LOCLAT, ETOTAL, YEAR
COMMON / PHRDAT / DTOTAL, MTOTAL, STOTAL
COMMON / COUNTS / NUMSUB, NUMMR, SUBNUM, RCHNUM, CORVEG
COMMON / LUMP1 / INFILE
          COMMON / LUMP1 / INFILE
COMMON / SUMMRY / FUNAME, FUETOT, FUNUM
00000
          Calculate and sum evapotranspiration and percentage of evapotranspiration for Arizona diverters, including the
          phreatophytes.
          CN1(1) = 'AZ'
          CN2(1) = 'Arizona
           CN3(1) = 'Totals for Arizona
          CN1(2) = 'CA'
CN2(2) = 'California
CN3(2) = 'Totals for California
          CN2(3) = 'Nevada
CN3(3) = 'Totals for Nevada
CN1(4) = 'US'
          CN2(4) = 'Federal Lands'
CN3(4) = 'Totals for Federal Lands'
          Read the titles from the input file and write to the output file.
          READ (62, '(12, A22)', ERR= 80) XLINES, TANAME
          OPEN (17, FILE= TANAME, ERR=400)
DO 45 I=1, XLINES

READ (62, (A100)', ERR= 80) TITLE(I)
WRITE (17, (5X, A100)', ERR=400) TITLE(I)
     45 CONTINUE
   45 CONTINUE
WRITE (17,600)
WRITE (17,600)
600 FORMAT (2X)
WRITE (17,100,ERR=80)
100 FORMAT ('Diverter',21X,'Evapotranspiration',7X,

"Percentage',4X,'Consumptive use')
           WRITE (17,600)
           Remove any diverter that is flagged with an '*' in the third
CCC
          column.
          DO 666 I=1, TOT
              IF (DIVNAM(I)(3:3) .EQ. '*') THEN
```

```
TOT = TOT-1
DO 667 J=I, TOT
                         \begin{array}{lll} \text{DIVNAM}(J) &= \text{DIVNAM}(J+1) \\ \text{ETOTAL}(J) &= \text{ETOTAL}(J+1) \\ \text{STOTAL}(J) &= \text{STOTAL}(J+1) \\ \text{MTOTAL}(J) &= \text{MTOTAL}(J+1) \\ \text{DIOTAL}(J) &= \text{DTOTAL}(J+1) \\ \end{array}
    667
                     CONTINUE
                 END IF
    666 CONTINUE
C
             Clear the TOTAL and PTOT arrays for calculations.
             DO 5 J=1,4
                 TOTAL(J) = 0.0
                 PTOT(J) = 0.0
         5 CONTINUE
             RTOT = 0
             Sum evapotranspiration for each diverter for each State and sum a grand total for the reach.
            DO 10 I=1,TOT
DO 15 J=1.4
IF (DIVNAM(I)(:2) .EQ. CN1(J)) GOTO 16
                 TOTAL(J) = TOTAL(J)+ ETOTAL(I)+ STOTAL(I)+ MTOTAL(I)+DTOTAL(I)

PTOT(J) = PTOT(J) + STOTAL(I) + MTOTAL(I) + DTOTAL(I)

IF (CN1(J) .EQ. 'US') THEN

ETOTAL(I) = ETOTAL(I) + STOTAL(I) + MTOTAL(I) + DTOTAL(I)
      10 CONTINUE
C
             DO 20 J=1,4
      RTOT = TOTAL(J) + RTOT
20 CONTINUE
C
             FLG = 1
             GCO = 0.0
GET = 0.0
             TCO = 0.0
TET = 0.0
C
            DO 250 I = 1, TOT
IF (FLG .EQ. 1) THEN
DO 25 J=1,4
      24
                         IF (DIVNAM(I)(:2) .EQ. CN1(J)) GOTO 26
                      CONTINUE
WRITE (*,29)
FORMAT (2X,'I CAN NOT MATCH THE DIVERTER STATE')
      25
      29
                      STOP
                     STOP
FLG = 0
WRITE (17,106,ERR=80) CN2(J)
FORMAT (2X,A24,/)
      26
    106
                 END IF
000
                 Calculate the percentage of evapotranspiration for each diverter and sums for each State.
                IF (DIVNAM(I)(:2) .EQ. CN1(J)) THEN
ET = (ETOTAL(I)*100.)/(RTOT*1.)
CO = RCHTS(RCHNUM) * ET / 100.
TTO = TTO + ETOTAL(I)
TCO = TCO + CO
TET = TET + ET
WRITE (17, 70, ERR=80) DIVNAM(I), ETOTAL(I), ET, CO
FORMAT (4X,A20,9X,112,9X,F8.2,7X,I12)
IF (I .NE. TOT) GOTO 250
IF (I .EQ. TOT) FLG = 2
END IF
      70
C
                  IF (CN1(J) .NE. 'US') THEN
PET = (PTOT(J)*100.)/(RTOT*1.)
PCO = RCHTS(RCHNUM) * PET / 100.
                      TET = TET + PET
TCO = TCO + PCO
TTO = TTO + PTOT(J)
                      WRITE (17,470, ERR=402) PTOT(J), PET, PCO
```

```
470
             FORMAT (4x, 'PHREATOPHYTES', 16x, 112, F17.2, 119)
           END IF
WRITE (17,471, ERR=402) CN3(J), TTO, TET, TCO
FORMAT (1X,/,2X,A24,3X,I16,F17.2,I19,//)
471
          GCO = GCO + TCO

GET = GET + TET

TTO = 0.0

TCO = 0.0

TET = 0.0

IF (FLG .EQ. 2) GOTO 250

FLG = 1

GOTO 24
GOTO 24
250 CONTINUE
WRITE (17,75,ERR=80) RTOT, GET, GCO
75 FORMAT ('Reach totals',21x,112,11x,F6.2,7x,112)
WRITE (17,600)
IRCHTS = INT(RCHTS(RCHNUM))
WRITE (17,450) IRCHTS
450 FORMAT ('Water-Budget Estimate ',43x,115)
CLOSE (17)
RETURN
        RETURN
       Error messages.
200 WRITE (*,201)
201 PORMAT (//,20X,'ERROR - Reading input files')
       STOP
  80 WRITE(*,81)
81 FORMAT (//,20X,'ERROR - Reading TANAME')
STOP
400 WRITE(*,401)
401 PORMAT (//,20x,'ERROR - Writing TANAME')
       STOP
  90 WRITE (*,91)
 91 FORMAT (//,20x,'ERROR - Writing VEGNAM(K,J), ETUSED(K,I,J)')
STOP
402 WRITE (*,403)
403 FORMAT (//,20X,'ERROR - WRITING TO TABLE 2')
       STOP
```

SELECTED REFERENCES

- Blaney, H.F., and Criddle, W.D., 1950, Determining water requirements in irrigated areas from climatological and irrigation data: U.S. Dept. of Agriculture, Soil Conserv. Service, Tech. Paper 96, 48 p.
- Condes de la Torre, Alberto, 1982, Support by the U.S. Geological Survey for adjudications, compacts, and treaties: U.S. Geological Survey Open-File Report 82-680, 24 p.
- Graham, M.H., Junkin, B.G., Kalcic, M.T., Pearson, R.W., and Seyfarth, B.R., 1985, Earth Resources Laboratory applications software: National Aeronautics and Space Administration National Space Technology Laboratories, No. 183.
- International Boundary and Water Commission United States and Mexico, 1984, Flow of the Colorado River and other western boundary streams and related data: Western Water Bulletin 1984, International Boundary and Water Commission United States and Mexico duplicated report, 92 p.
- National Climatic Data Center, 1951-84a, Climatological data, annual summary—Arizona: U.S. Department of Commerce (published annually).
- National Climatic Data Center, 1951-84b, Climatological data, annual summary—California: U.S. Department of Commerce (published annually).
- National Climatic Data Center, 1951-84c, Climatological data, annual summary—Nevada: U.S. Department of Commerce (published annually).
- Owen-Joyce, S.J., 1987, Estimates of average annual tributary inflow to the lower Colorado River, Hoover Dam to Mexico: U.S. Geological Survey Water-Resources Investigations Report 87-4078, 1 sheet.
- U.S. Bureau of Reclamation, 1986, Compilation of records in accordance with Article V of the Decree of the Supreme Court of the United States in Arizona vs. California dated March 9, 1964, calendar year 1984: U.S. Bureau of Reclamation duplicated report, 34 p.
- U.S. Bureau of Reclamation, 1987, Compilation of records in accordance with Article V of the Decree of the Supreme Court of the United States in Arizona vs. California dated March 9, 1964, calendar year 1985: U.S. Bureau of Reclamation duplicated report, 37 p.
- U.S. Supreme Court, 1964, State of Arizona, plaintiff v. State of California, et al., defendants: Decree--March 9, 1964, no. 8, original, 14 p.
- White, N. D., and Garrett, W. B., 1988, Water resources data for Arizona, water year 1985: U.S. Geological Survey Water-Data Report AZ-85-1, 343 p.

REFERENCES

ATTACHMENTS

ATTACHMENTS 24-1

		1234367690123436769012343	678901234567890123456789012345678901234567890123456789012345	
1	٥	FLOW84.DAT	(Flow data file)	╗
2		TRIB.DAT	(Tributary inflow data file)	11
3	0	DU84.DAT	(Domestic-use data file)	0
4	1	Area84.dat	(Open-water surface area & evaporation-rates data file)	- 1 1
5	이	KC.DAT	(Empirical water-use coefficients data file)	0
6	1	LIGHT.DAT	(Daylight data file name)	- 1 1
7	이	AREAS84.TIT	(Title data file for TABLE1 subroutine)	이
8		CONUSE84.TIT RATES84.TIT	(Title data file for TABLE2 and TABLE4 subroutines) (Title data file for TABLE3 subroutine)	
10	٥	DU84.OUT	(File name for domestic-use output file)	l°l
	0	BUD84.OUT	(File name for water-budget output file)	lol
12	ľ	1984	(Calendar year to run LCRAS)	۱۲
	0	4	(Number of major reaches)	lol
14	i I	HV2DV	(First reach subroutine name)	11
	0	1	(Number of subreaches in the reach)	
16		HOOV2DAV.DAT	(Image-classification data file)	- 1 1
17	0	36	(Latitude for the subreach)	이
18		WILLOW-B.TMP	(Temperature file for the subreach)	1.1
19	이	WILLOW-B.PPT	(Precipitation file for the subreach) (Second reach subroutine name)	이
20 21		DV2PK 1	(Number of subreaches in the reach)	اما
22		BILLWR.DAT	(Image-classification data file)	이
23		36	(Latitude for subreach)	0
24		PARKER.TMP	(Temperature file for the subreach)	
25	0	PARKER . PPT	(Precipitation file for the subreach)	0
26	П	3	(Third reach subroutine name)	-11
27	이	DAV2PARK.PHR	(Image-classification data file for the 1st subreach)	이
28		36	(Latitude of the 1st subreach)	
29	이	BULLCITY.TMP	(Temperature file for the 1st subreach)	이
30 31	ادا	BULLCITY.PPT DAV2PARK.DAT	(Precipitation file for the 1st subreach) (Image-classification data file for the 2nd subreach)	اءا
32	이	36	(Latitude of the 2nd subreach)	이
33	6	BULLCITY.TMP	(Temperature file for the 2nd subreach)	lol
34		BULLCITY.PPT	(Precipitation file for the 2nd subreach)	
35	ol	HAV2PARK.DAT	(Image-classification data file for the 3rd subreach)	اها
36	11	36	(Latitude for the 3rd subreach)	- 1 1
37	이	BULLCITY.TMP	(Temperature file for the 3rd subreach)	이
38	11	BULLCITY.PPT	(Precipitation file for the 3rd subreach)	- 1 1
39	이	PK21P	(이
40		5		
41 42	이	PARK2IMP.DAT		이
43	اها	PARKER.TMP		اها
44	ľ	PARKER . PPT		11
45	l۰	PARK2IMP.PHR		lol
46	11	34		- 1 1
47	이	PARKER.TMP		0
48	H	PARKER.PPT		- 1 1
49	이	PV2IMP.DAT		이
50	П	34		-1.1
51	이	BLYTHE.TMP		이
52 53		BLYTHE.PPT PV2IMP.PHR		
54	۱۲	34		ا۲ا
55		BLYTHE . TMP		اها
56	ľ	BLYTHE . PPT		ا ًا
57	l۰l	YUM2IMP.DAT		0
58	П	34		- 1 1
59	이	BLYTHE . TMP		0
60	1.1	BLYTHE.PPT		1.1
61	이	IP2ML		٩
62 63	6	3 IMP2MORL.DAT		اءا
64	I٦	32 ·		0
65	اها	YUNA.TMP		
66	ľ	YUMA. PPT		
67	0	IMP2MORL.PHR		0
68		32		
69	이	YUMA.TMP		0
70	Ш	YUMA.PPT		
71	l٩	SOUTHYUM.DAT		이
72 73	ارا	32 YUMA.TMP		
74	l°l	YUMA.PPT)	0
75	Ы	400001111	******	l _o l
	171			1-1

A. Example of the primary data file.

1 2 3 4 5 6 7 8 123456789012345678901234567890123456789012345678901234567890123456789012345

0	GAGED FLOWS FOR EACH REACH				
۰	CALENDAR YEAR: 1984				
۰		Flow, in acre-feet	Station Number	LCRAS Variable	
۰	Hoover Dam to Davis Dam	2020 2000	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	V4224030	
۰	Colorado River below Hoover Dam Change in storage Lake Mohave	21861000 -150000	09421500 09422500	FLOWS (1) FLOWS (2)	
۰	Davis Dam to Parker Dam	130000	0,422300	12010 (2)	
۰	Colorado River below Davis Dam Colorado River Aqueduct	21658000 1237230	09423000 09424150	FLOWS (3) FLOWS (4)	
0		111800	09426000	FLOWS (5)	
٥	Bill Williams River below Alamo Dam Central Arizona Project Canal Change in storage Lake Havasu	53100	09426650 09427500	FLOWS (6) FLOWS (7)	
٥	Parker Dam to Imperial Dam				
٥	Change in storage Senator wash	20464000 652	•	FLOWS (8) FLOWS (9)	
	Colorado River above Imperial Dam	19106000	09429490	FLOWS (10)	
٥	Imperial Dam to Morelos Dam Diversion to Mittry Lake	9790	09522400	FLOWS(11)	
	All American Canal All American Canal below Pilot Knob	8269000 3046000	09523000 09527500	FLOWS(12) FLOWS(13)	
٥	Gila Gravity Main Canal Wellton-Nohawk Canal	754800 391400	09522500 09522700	FLOWS (14) FLOWS (15)	
	Colorado River below Imperial Dam	10080000	09429500	FLOWS(16)	
익	Gila River near Dome Colorado River at NIB	266000 15 43 1000	09520500 09522000	FLOWS (17) FLOWS (18)	
٩	Eleven Mile wasteway Copper wasteway	1530 721	09525000 09531 8 50	FLOWS(19) FLOWS(20)	
이	Twenty-One Mile wasteway	99380	09533000 0953 4 000	FLOWS(21) FLOWS(22)	
이	West Main Canal wasteway East Main Canal wasteway	4090	09534300	FLOWS (23) FLOWS (24)	
이	* Added to Colorado River above Imperia				
이	nate above imposse				
이					
۰	,				
۰					
۰					
٥					
۰					
۰					
۰					
۰l					
۰					
۰					
۰					
۰					
٥					
٥					
٥					

B. Example of the flow data file.

1 2 3 4 5 6 7 8 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345

	_	1234567890123456789012345678901234567890123	456789012	3450	6 /890123456 /890123456 /89012345	
1 2	0	UNMEASURED TRIBUTARY INFLOW ESTINATES				•
3	0	CALENDAR YEAR: 1984	Flow, in acre-feet		LCRAS Variable	٥
5	이	Hoover Dam to Davis Dam	2000	_		0
6 7	اها	Springs Unmeasured runoff	3080 2100		TRIB(1) TRIB(2)	0
8	ľ۱	Ground-water discharge	2100 200	Ē	TRIB(3)	١٦
9	이	Eldorado Valley	1100	E	TRIB(4)	0
10 11	اها	Davis Dam to Parker Dam				٥
12	ľ	Unmeasured runoff				١٦
13	이	Davis Dam to Topock		E	TRIB(5)	0
14 15	اه	Topock to Parker Dam Whipple Mountains	15000 1150		TRIB(6) TRIB(7)	٥
16	ľ	Unmeasured runoff from tributary streams	1150	_	**************************************	۱۲
17	이	Piute Wash	1000		TRIB(8)	0
18 19	اها	Sacramento Wash Bill Williams River subarea	2500 4000		TRIB(9) TRIB(10)	
20	М	Ground-water discharge		_	•	١٦
	이	Davis Dam to Topock	880 0		TRIB(11)	0
22	اها	Topock to Parker Dam Piute Valley	2300	E	TRIB(12) TRIB(13)	اه
23 24	H	Sacramento Valley	10000	E	TRIB(14)	
25	l٩	Chemehuevi Valley Bill Williams River subarea	260 4 000		TRIB(15)	I٩
26 27	اها	Pill Millidius Kivet subdies	4000		TRIB(16)	اه
28	H	Parker Dam to Imperial Dam				
29 30	이	Unmeaaured runoff Whipple Mountains	1150	9	TRIB(17)	이
31	اها	Big Marie-Riverside Mountains	2300		TRIB(18)	l.
32	H	Palo Verde-Mule Mountains	1200		TRIB(19)	11
33 34	l°l	Dome Rock-Trigo-Chocolate Mountains Unmeasured runoff in tributary streams	16200	E	TRIB(20)	٩
35	اها	Vidal Wash	1300	E	TRIB(21)	٥
36		Bouse Wash	4800		TRIB(22)	- 1
37 38	l°l	Tyson Wash McCoy Wash	2600 800		TRIB(23) TRIB(24)	ျပ
39	اها	Milpitas Wash	1200		TRIB(25)	lo
40	11	Ground-water discharge		_		
41 42	l°l	Bouse Wash Tyson Wash	1200 350		TRIB(26) TRIB(27)	٥
43	o	Vidal Wash	250	E	TRIB(28)	٥
44		Chuckwalla Valley	400	E	TRIB(29)	
45 46	l°ا	Imperial Dam to Morelos Dam				l°
47	0	Ground-water discharge				٥
48 49	ا،	Gila River Unmeasured runoff from Yuma area	1000 2000		TRIB(30)	
50	ľ۱	onmeasured runorr from runo area	2000	L	TRIB(31)	°
51	l۰l					0
52 53	اها					٥
54	ľ					۱
55	이					٥
56 57	اه					٥
58						ا ًا
59	이					0
60 61	اها					٥
62						
63 64	l٩					٥
65	اها					اها
66						
67 68	l°l					١°
69	o					0
70 71 72 73	11					
72	l٩					°
73	0					٥
74 75	ا،ا					
75	띱					_ º

C. Example of the tributary-inflow data file.

ATTACHMENT C

C-1

1 2	0	DOMESTIC- AND MUNICIPAL-U Data Column 1: Pumpage,					0
3		Data Column 2: Resident			Tecur	us to the liver	اها
4	П	Data Column 3: Resident			in ac	re-feet	- [1
5	0	HOOVER TO DAVIS		_			0
6	П	Willow Beach	90	0	.00	AZ NV	- 1.1
7	이	Cottonwood Cove Katherine	439 370	ŏ	.00	AZ	0
ŝ	اها	Diversion - Davis Dam	142	ŏ	.00	AZ	اه
10	ľ	L.C.R.D. Project	60	ŏ	.00	AZ	١٦
11	o	DAVIS TO PARKER					0
12	1	Bullhead City-Riviera	o	15895	.03	AZ	11
13	이	Bermuda City	0	500	.03	AZ	0
14 15	L	Laughlin Mohave Steam Plant	0 1 4 198	95 0	.30	NV NV	
16	이	Golden Shores	14138	650	.03	AZ	0
17	اه	Topock	ŏ	25	.03	AZ	٥
18		Lake Havasu City	Ō	17645	.03	AZ	1
19	이	Needles	Ō	5100	.39	CŸ	0
20	П	Havasu Lake	. 0	0	.00	CA	
21 22	이	Mojave Water Cons Dis Lake Havasu I&D Dis	108 9085	0	.00	AZ AZ	0
23	l۵	Consol Water Util Ltd		ŏ	.00	AZ	0
24		San Bernardino Co.	15	ŏ	.00	CA CA	ا"ا
25	0	Clark Co Parks & Rec	6	Ō	.00	W	0
26	Ш	Portenier, Warren E.	42	0	.00	МA	
27 28	이	PARKER TO IMPERIAL Parker (Town)	0	2530	.13	AZ	0
29	١٠l	Poston	ŏ	260	.03	AZ AZ	0
30	М	Ehrenberg	ŏ	1204	.03	λŽ	ľ
31	o	Cibola	ō	293	.03	AZ	0
32	П	Martinez Lake	0	10	.03	λZ	
33	이	Earp	0	1500	.75	CA	0
34 35	L	Parker Dam/Govt Camp Vidal	0	136	.88	CA	
36	이	Blythe (City)	0	36 7512	.07 .29	CA CA	0
37	o	East Blythe	ŏ	1940	.25	CÀ	اه
38	П	Ripley	ō	450	.16	CA	
39	이	Palo Verde	0	332	.07	CA	0
40	П	Big River	890	0	.00	CA	
41 42	이	BLM Permittees IMPERIAL TO MORELOS	206	0	.00	CX	0
43		Yuma (City)	0	45960	.09	λZ	٥
44	ľ	Yuma (County)	ŏ	19406	.03	λZ	ľ
45	l۰l	Yuma Proving Ground	ō	1100	.03	AZ	0
46	H	Bard	0	1532	.06	Cλ	- 1
47	이	Winterhaven	. 0	896	.09	Cλ	0
48 49		Marine Corps Air Sta S. Pacific Co.	1775 48	0	.00	AZ AZ	٥
50	ľ	Yuma Co.	12	ŏ	.00	AZ AZ	l°
51	l۵l	Yuma Mesa Fruit Grow	12	ŏ	.00	λZ	
52		Yuma Union HS	200	ŏ	.00	AZ	
53	이	MORELOS TO SIB	_	4	•-		0
54	Ш	Somerton	0	4320	.03	AZ	
55 56	l°	Gadsden San Luis	0	0 2575	.00	AZ AZ	l°
57	اہا	Dan Dare	v	-313	.03	ru e	٥
58							اکا
59	0						0
60	H						1 1
61	l°						0
62 63	ارا						اءا
64	l°l						0
65	o						٥
66	ll						1
67	이						0
68	Ш						
69 70	이						°
71	l۵l						٥
72	ا ًا						١
73	0						0
74							1
75	의						٥

D. Example of the domestic-use data file.

ATTACHMENT D D-1

1 2 3 4 5 6 7 8 123456789012345678901234567890123456789012345678901234567890123456789012345

1	o	12345678901234567890123456789012345678901234567890123456789012345 OPEN-WATER SURFACE AREAS AND EVAPORATION RATES FOR EACH REACH	0
3	٥	CALENDAR YEAR: 1984	٥
3 4 5 6	0	Surface Areas	o
7	0	HV.DV 25419.38 acres AREAS(1) DV.PK 21961.86 acres AREAS(2)	٥
8		PK.IP 10262.38 acres AREAS(3) IP.ML 1385.66 acres AREAS(4)	٥
10 11	٥	BWR 576.00 acres AREAS(5) Senator Wash 0.00 acres AREAS(6)	٥
12 13		Evaporation Rates	0
14 15	0	HV.DV 5.85 feet EVAPS(1) DV.PK 5.91 feet EVAPS(2)	٥
16	۱۱	PR.IP 5.68 feet EVAPS(3)	- 1 1
17 18	ľ	IP.ML 5.20 feet EVAPS(4) BWR 5.00 feet EVAPS(5)	°
19 20	°	Area of Open Water	l°
21 22	P	HV.DV 25419.38 feet OPNWTR(1) DV.PK 21961.86 feet OPNWTR(2)	°
23 24	l°	PK.IP 10262.38 feet OPNWTR(3) IP.ML 1385.66 feet OPNWTR(4)	°
25 26	١º		0
27 28	0		٥
29	0		٥
30 31	0		٥
32 33	0	•	٥
34 35	0		٥
36 37			٥
38 39	ا،		٥
40 41			٥
42			٥
44	П		
45 46	°		°
47 48	l°		l°
49 50	°		°
51 52	°		٩
53 54	P		٥
55 56	٥		0
57 58	0		0
59 60	0		0
61	0		٥
62 63	0		٥
64 65	0		
65 66 67 68 69 70 71 72 73 74 75	٥		٥
68 69	0		٥
70 71	0		ő
72	1 1		
74	٥		°
75	0		٥

E. Example of the open-water surface areas and evaporation-rates data file.

ATTACHMENT E E-1

0	SUBREACH : MOJAVE NUMBER OF CLASSES : 24	(Subreach name) (Number of classes from the image)	
0	VEGETATION TYPES : 6	(Number of different vegetation types)	
	ALPALPA 3 7,16,18	(First vegetation name, number of classes) (Class numbers for the 1st vegetation type)	١
Н	COTTON 2	(Second vegetation name, number of classes)	1
이	8,10 WHEAT 1	(Class numbers for the 2nd vegetation type)	١
l.	17	(١
П	DENSE 0		
이	0 Medium 1		
l۵	24		
ll	SPARSE 3		
l°l	3,11,15) (Required 2 blank lines before each	
l۰l		diverter name)	
H	AZ FORT MOJAVE IR	(Diverter name)	
이	CLASS # ACREAC	(Required blank line after name) (Title line)	
	1 7357.4		
Н	2 1026.0	(Class two, acreage for class two)	
이	3 201.9		
	4 470.7 5 328.6		
H	6 1515.3	14	
٥	7 2015.7		
٥	8 671.5 9 63.0		
H	10 3157.9) 4	
٥	11 532.	53	
	12 1100.2 13 1048.5		
"	14 1699.	ž	
٥	15 2822.	51	
	16 2804.		
이	17 221.1 18 1052.6		
Ы	19 544.2		
	20 18.		
l٩	21 16.6 22 8.6		
اها	23 1.0		
H		00)	
이		(Required 2 blank lines before each diverter name)	
	CA FORT MOJAVE IR	(Second diverter name)	
ľ		(Required blank line after name)	
이	CLASS # ACREA		
	1 216.2 2 33.9	(Class one, acreage for class one) (Class two, acreage for class two)	
۱٦	2 33.9 3 27.5	(Class three, acreage for class three)	
٥	4 15.4	15 (
L	5 46.3		
이	6 2.4 7 142.0		
0	8 17.9	91	
	9	00	
이	10 11 82.	74 70	
اها	12 61.	77	
П	13 69.1	31	
이	14 92.0 15 158.3		
$ _{\circ} $	15 158.1 16 1069.1		
	17 345.	94	
이	18 537.		
	19 35.0 20	33 52	
ľĺ	21 .0	00	
0	22	00	
		00 00)	
۱۲		(Required 2 blank lines before each	
		diverter name)	

F. Example of an image-processing data file.

76	ि	NV FORT MOJAVE IR		(Third diverter name)	Tal
77 78		CLASS #	ACREAGE	(Required blank line after name) (Title line)	
79	11	1	736.36	(Class one, acreage for class one)	
80	이	2	502.84	(Class two, acreage for class two)	이
81 82		3 4	40.15 110.58	(Class three, acreage for class three)	
83	ľ	5	406.48	1	۱۲
84	0	6	8.65		
85 86		7 8	134.67 25.94		
87	l°l	Š	.00		9
88	0	10	.00		0
89 90		11 12	16.68		
91	l°l	13	271.20 494.82		I°
92	lol	14	695.58		
93	$\mathbf{I}_{-}\mathbf{I}$	15	430.57		1.1
94 95	이	16 17	16.06 .00		0
96		18	.00		
97	11	19	132.20		11
98 99	이	20 21	.00 .00		l°l
100		22	.00		
101	H	23	.00		
102 103	이	24	.00	(Required 2 blank lines before each	0
104				(kequired 2 blank lines before each	
105		AZ STATE OF AZ		(Fourth diverter name)	
106	이	CT 100 4	1000100	(Required blank line after name)	0
107 108		CLASS #	ACREAGE 3520.56	(Title line) (Class one, acreage for class one)	
109	ľ	2	1189.20	(Class two, acreage for class two)	ľ
110	이	3	238.44	(Class three, acreage for class three)	0
111 112		4 5	427.49 730.79	(
113	М	ě	347.19	Á ₂	ľ۱
114	이	7	1734.65	*	0
115 116	.	8 9	369.44 33.36		
117	М	10	745.00		١٦
118	0	11	619.62		0
119 120		12 13	954.45 1406.62		
121	ľ	14	2265.90		۱۲
122	o	15	2608.14		0
123 124		16 17	1910.68 156.92		Ш
125	0	18	610.96		l°
126	0	19	583.17		
127	11	20	12.99		11
128 129	0	21 22	15.45 3.71		l°
130		23	.00		
131	11	24	.00)	11
132 133	이			(Required 2 blank lines before each diverter name)	
134	0	CA STATE OF CA		(Fifth diverter name)	0
135	11			(Required blank line after name)	11
136 137	0	CLASS #	ACREAGE 1087.23	(Title line)	0
137	l.	2	160.01	(Class one, acreage for class one) (Class two, acreage for class two)	
139	11	3	27.18	(Class three, acreage for class three)	Ш
140	0	4 5	163.09 160.63	(0
141 142		6	88.35		
143	11	7	677.06		11
144	이	8 9	130.34		0
145 146		10	11.74 140.23		
147		11	176.06		11
148	0	12	319.38		0
149 150		13 14	221.77 540.54		
200	Ц				لال

F. Example of an image-processing data file—Continued.

		1234367630123436763012343676301234	106/890123406/890123406/890123406/890123406/89012345
151	ि 	15 867.32	0
152	ľ	16 932.18	٢
153	o	17 557.21	•
154		18 383.63	
155 156	이	19 162.47 20 2.47	•
157	Ы	21 6.18	٥
158	11	22 3.71	
159	이	23 1.24	
160 161		24 .00	(Required 2 blank lines before each
162	ľ		(Required 2 blank lines before each diverter name)
163	ᅵᆈ	NV STATE OF NV	(Sixth diverter name) o
164	11		(Required blank line after name)
165 166	이	CLASS # ACREAGE 1918.11	(Title line) (Class one, acreage for class one)
167		1 1918.11 2 701.76	(Class two, acreage for class two)
168	11	3 295.29	(Class three, acreage for class three)
169	이	4 261.92	(
170 171	$ \cdot $	5 234.13 6 88.33	
172	ľ	7 0.00	ľ
173		8 0.00	•
174 175		9 9.88 10 0.00	
176	ľ	11 27.18	"ا
177	0	12 358.30	•
178	اءا	13 781.46 14 959 29	<u> </u>
179 180	°	14 859.29 15 560.30	•
181	lol	16 418.23	0
182	П	17 0.00	
183	이	18 0.00 19 135.29	·
184 185	$ \cdot $	20 3.71	lo
186		21 5.57	
187		22 1.86	•
188 189		23 .00 24 468.19	,
190	l°l	24 400.13)
191	0		lo
192	11		
193 194	이		•
195	o		o
196	11		
197 198	이		•
199	Ы		
200	11		
201	이		•
202 203			٥
204			ٳ
205	0		
206 207	ا،ا		<u>l</u> _
208	۲۱		ļ°
209	0		•
210	ارا		
211 212	ľ		ļ°
213	0		
214	Ш		
215 216	l°l		•
217	6		
218	11		
219	0		•
220 221			
222			ľ
223	0		 •
22 4 225			
263	Ц		

F. Example of an image-processing data file—Continued.

ATTACHMENT F F-3

0 0 0 0	1967 1968 1969 1970 1971 1972 1973 1974	514 547 519 508 478	618 534 596	648 608	691	802	910	~~~			772	645	485		
0 0 0	1970 1971 1972 1973	519 508	596	608				957	909	872	747	621	486		0
0 0	1972 1973			626	72 4 667	830 820	887 901	964 968	995 959	898 845 844	711 719	622 623	548 511		٥
0	1973 1974		569 570	632 690	705 697	75 4 800	990 905	978 983	950 929	839	693 694	570 559	474 470		
0		471 475	540 539	567 650	684 693	828 831	913 937	974 954	942 920	845 882	730 754	591 600	519 486		
11	1975 1976 1977	494 515	541 583	593 606	649 680	789 822	899 886	968 963	923 908	868 832	714 696	577 000	513 000		
	1978	488 514	569 552	576 629	727 68 4	735 779	915 911	965 956	946 920	852 820	746 755	601 561	552 448		0
이	1979 1980	440 526	505 577	593 595	691 696	796 751	878 864	921 947	986 916	891 844	761 729	573 607	518 566		o
0	1981 1982	552 507	574 563	611 606	751 695	793 795	922 873	975 923	948 929	870 844	71 4 697	635 577	543 504	709	0
	1983 1984	519 516	570 5 4 6	620 629	651 675	783 837	869 876	919 925	882 898	865 871	723 690	606 586	531 490	712 712	٥
•	1985 1986	496 551	516 587	599	733 717	811 811	898 916	935 917	904 961	811 804	719 717	570 629	520 533	709	
	1987	500	578	608	744	802	897	908	931	865	772	600	480	724	
0															o
															٥
0															0
0															o
0															
0															0
0															
															0
.															
0															o
															0
。															o
0															٥
0							•								o
															٥
															o
															o
															٥
0															o
															٥
															٥
															٥
o															o

G. Example of a temperature data file.

ग	0201 1967	9376	WIL	LOW E	EACH,	AZ,	Month	ly pr	ecipi	tatio	n, in	1/10	Oths	inches		10
۰	1968	000010	00350	00300	00040	00010	00120	00330	00200	00070	00200	00140	0000			ŀ
۰	1970	001350 000050	000270	00850	00000	00000	00010	00290	01660	00000	00000	00500	0020			ŀ
۰	1972	000030 000000	00000	00000	00160	00070	00040	00270	00610	00220	00500	01510	0026			1
ا،	1973 1974	058 098	045 001	229 050	011 000	030 0	067 000	006	005 028	000	000 138	045 041	0 049			١,
اه	1975 1976	002 000	010 133	114 011	071 025	031 039	000	033 104	101 000	074 342	021 148	012 013	002 005			1
ا،	1977 1978	026 147	000 098	106 173	0 108	088 045	005 000	032 0	100 1 54	196 088	025 066	006 144	073 096			١
ا،	1979 1980	180 149	065 31 4	205 109	000	016 22	008	061 97	008 11	0 83	016 13	025 0	079 0			l
ا،	1981 1982	52 75	32 97	126 106	0 11	56 23	0	0 5	141 193	232 6	31 19	30 49	0 87	671		l
	1983 1984	42	26 0	71 5	47 0	0	0	1 183	199 185	42 75	85 27	10 76	51 293	573 846		۱
	1985 1986	80 35	18 19	4	17	0	2 2 3	110 24	0	6	10 15	75 27	101	327		l
٥	1987 1988	83	32 56	21 0	30 102	37 3	15	-9	Ŏ	Ó	147	82	75	531		١
٥	1,00		-	·		•										
ا																
ا																١
ا																l
٥																
																I
ا																l
ျ																
ျ																
익																١
°																
ျ																l
°																l
ျ																
°																
이																
°																١
٥																
이																١
0																l
0																۱
0																ı
٥																
۰																l
۰																
٥																١

H. Example of a precipitation data file.

2	0	CROP	EMPIRICA JAN	L WATE	R-USE MAR	COEFFI APR	CIENTS MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	0
4	ျ	COTTON	0.00	0.00	0.00	0.09	0.27	0.60	1.20	1.40	1.11	0.60	0.27	0.00	0
5	٥	ALFALFA REDMIINA	0.00	0.92	1.21	1.25	1.36	1.36	1.22	1.10	1.33	0.95 0.71	0.80	0.00	0
	이	COTTON ALFALFA BERNUDA SORGHUN COTTON WHEAT CITRUS BROCCOLI MELONS CAULIFLOWER FALL LETTUCE SAFFLOWER SPRING LETTUCE DRY ONIONS HILO CORN DATES TOMATOES MEDIUM SPARSE DENSE	0.00	0.00	0.00	0.00	0.00	0.00	0.44	1.48	1.05	0.35	0.00	0.00	0
	이	WHEAT	0.43	0.80	1.63	1.63	0.42	0.00	0.00	0.00	0.00		0.04	0.30	0
	0	BROCCOLI	1.02	0.54	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.74	1.19	0.99	0
13	0	CAULIFLOWER	0.96	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.66	1.33	0.78	0
	۰	SAFFLOWER	0.14	0.33	0.80	1.92	1.49	1.56	0.34	0.00	0.00	0.00	0.00	0.00	0
	٥	DRY ONIONS	0.34	0.56	1.23	1.72	0.43	0.00	0.00	0.00	0.00		0.00	0.00	0
	0	CORN	0.07	0.44	1.50	1.49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	۰
20 21	۰	TOMATOES	2.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0
22 23	٥	SPARSE	0.00	0.71	0.74	0.77	0.84	0.84	0.84	0.83	0.82	0.58		0.00	
	٥	DENSE	0.00	0.85	1.12	1.15	1.26	1.26	1.26	1.25	1.23	0.88	0.74	0.00	0
	٥														۰
	0													Į.	۰
30 31 32	٥													ŀ	۰
33	0													ŀ	۰
	0													ŀ	٥
	0													- 1	۰
	٥													1	۰
	٥													- 1	۰
	0													Į.	۰
	٥].	۰
	0													1	۰
	0														0
	0											•			٥
	٥													- [0
	٥].	٥
56 57	0														0
	٥														0
60	٥										•			1.	0
	٥														0
	$ \cdot $													Į,	0
66 67].	0
68 69														· · · · · · · · · · · · · · · · · · ·	•
70 71														1.	0
70 71 72 73 74 75														- 1	0
74 75	.													- 1	٥

I. Example of the empirical water-use coefficients data file.

ATTACHMENT I I-1

1 2 3 4 5 6 7 8 1234567890123456789012345678901234567890123456789012345678901234567890123456789012345

•	DAY	TIME H	OUR PE	RCENTA	GES F	OR EACH	HONT	FOR 1	NDICAT	ED DEG	REES C	F LATI	TUDE	
٥	LAT	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	
٥	24 26	7.58 7.49	7.17 7.12	8.40 8.40	8.60 8.64	9.30 9.38	9.20 9.30	9.41 9.49	9.05 9.10	8.31 8.31	8.09 8.06	7.43 7.36	7.46 7.35	
٥	28 30	7.40 7.30	7.07 7.03	8.39 8.38	8.68 8.72	9.46 9.53	9.38 9.49	9.58 9.67	9.16 9.22	8.32 8.34	8.02 7.99	7.27 7.19	7.27	
٥	32 34	7.20 7.10	6.97	8.37 8.36	8.75 8.80	9.63 9.72	9.60 9.70	9.77	9.28	8.34 8.36	7.93 7.90	7.11	7.05 6.92	
٥	36 38	6.99 6.87	6.86	8.35 8.34	8.85 8.90	9.81 9.92	9.83	9.99 10.10	9.40	8.36 8.38	7.85 7.80	6.92	6.79	
٥	40 42	6.76 6.62	6.73	8.33 8.31	8.95	10.02 10.14	10.08	10.22	9.54 9.62	8.38	7.75	6.72	6.52	
٥	44 46	6.49 6.33	6.58	8.30 8.29	9.05	10.26 10.39	10.38	10.49	9.70	8.41	7.63 7.58	6.49	6.22	
٩	48 50	6.17 5.98	6.42 6.32	8.27 8.25	9.18	10.53 10.69	10.71	10.80	9.89	8.44 8.44	7.51 7.43	6.22 6.07	5.86 5. 6 5	
٥														
٥														
0														
٩														
٥														
٥														
٥														
9														
٥						,								
이														
0														
٥														
0												•		
9														
٩														
이														
٥														
٥														
٥														
0														
0														
٥														
$ \circ $														
١º														
0														
0														

J. Example of the daylight data file.

ATTACHMENT J J-1

1 MPCOMPAGE. 1	0	AREAS84.TIT	0
Table 33.—Areas of phreatophytes, in acres, Hoover Dam to Davis Dam, 1984 Table 64.—Areas of each vegetation type, in acres, along the Bill Williams Hiver, 1984 Table 34.—Areas of each vegetation type, in acres, along the Bill Williams Hiver, 1984 Table 34.—Areas of each vegetation type by diverter, in acres, Davis Dam to Dam, 1984 Table 35.—Areas of each vegetation type by diverter, in acres, Earth Dam, 1984 Table 36.—Areas of each vegetation type by diverter, in acres, Imperial Dam to Morelos Dam, 1984 Table 36.—Areas of each vegetation type by diverter, in acre-ft, Hoover Dam to Davis Dam, 1984 Table 36.—Areas of each vegetation, in acre-ft, for the Bill Williams Hiver, 1984 Table 36.—Evapotranspiration and consumptive use, in acre-ft, Davis Dam to Davis Dam, 1984 Table 36.—Evapotranspiration and consumptive use, in acre-ft, Davis Dam to Morelos Dam, 1987 Table 36.—Evapotranspiration and consumptive use, in acre-ft, Hoover Dam to Morelos Dam, 1984 Table 36.—Evapotranspiration and consumptive use, in acre-ft, Hoover Dam to Morelos Dam, 1984 Table 40.—Evapotranspiration and consumptive use, in acre-ft, Hoover Dam to Morelos Dam, 1984 Table 40.—Evapotranspiration and consumptive use, in acre-ft, Hoover Dam to Morelos Dam, 1984 Table 40.—Evapotranspiration and consumptive use, in acre-ft, Hoover Dam to Morelos Dam, 1984 Table 40.—Evapotranspiration and consumptive use, in acre-ft, Hoover Dam to Morelos Dam, 1984 Table 40.—Evapotranspiration and consumptive use, in acre-ft, Hoover Dam to Morelos Dam, 1984 Table 40.—Evapotranspiration and consumptive use, in acre-ft, Hoover Dam to Morelos Dam, 1984	_ (_	0
However, 6Areas of each vegetation type, in acres, along the Bill Williams River, 1984 1 Phills 34Areas of each vegetation type by diverter, in acres, Davis Dam to Parish Dam, 1982 1 Phills 35Areas of each vegetation type by diverter, in acres, Parker Dam to Imperial Dam, 1822 1 Rabis 35Areas of each vegetation type by diverter, in acres, Imperial Dam to Morelos Dam, 1824 1 Rabis 35Areas of each vegetation type by diverter, in acres, Imperial Dam to Morelos Dam, 1984 1 WAZDWGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	•	Table 32 Areas	, ,
1072084.7 1072084.7	0	Table 6A Areas	0
1 INTERIGRALY 1	•	Table 34 Areas of	0
Table 38.—Areas of each vegetation type by diverter, in acres, farger land nome of table 38.—Areas of each vegetation type by diverter, in acres, farger land to make 38.—Areas of each vegetation type by diverter, in acres, farger land to make 38.—Areas of each vegetation type by diverter, in acres, farger land to make 38.—Table 33.—Exapotranapization, in acre-ft, for the Bill Williams River, 1984 1 DATES CO.—Propotranapization and consumptive use, in acre-ft, Parker Dam to Parker Dam, 1984 1 PAZER CO.—Propotranapization and consumptive use, in acre-ft, Imperial Dam to Morelos Dam, 11 MAZER CO.—Propotranapization and consumptive use, in acre-ft, Imperial Dam to Morelos Dam, 1984 1 PAZER CO.—Propotranapization and consumptive use, in acre-ft, Hover Dam to Morelos Dam, 1984 1 PAZER CO.—Propotranapization and consumptive use, in acre-ft, Hover Dam to Morelos Dam, 1984 1 PAZER CO.—Propotranapization and consumptive use, in acre-ft, Hover Dam to Morelos Dam, 1984 1 PAZER CO.—Propotranapization and consumptive use, in acre-ft, Hover Dam to Morelos Dam, 1984 1 PAZER CO.—Propotranapization and consumptive use, in acre-ft, Hover Dam to Morelos Dam, 1984 1 PAZER CO.—Propotranapization and consumptive use, in acre-ft, Hover Dam to Morelos Dam, 1984 1 PAZER CO.—Propotranapization and consumptive use, in acre-ft, Hover Dam to Morelos Dam, 1984 1 PAZER CO.—Propotranapization and consumptive use, in acre-ft, Hover Dam to Morelos Dam, 1987 1 PAZER CO.—Propotranapization and consumptive use, in acre-ft, Hover Dam to Morelos Dam, 1987 1 PAZER CO.—Propotranapization and consumptive use, in acre-ft, Hover Dam to Morelos Dam, 1987 1 PAZER CO.—Propotranapization and consumptive use, in acre-ft, Hover Dam to Morelos Dam, 1984	٥	1 PK2IM84.A	0
Table 38Areas of each vegetation type by diverter, in acree, Imperial Dam to Morelos Dam, CONNUSEMA.TIT. 1 H72DV84.CU Table 33Evapotranapization and consumptive use, in acre-ft, Hoover Dam to Davis Dam, 1984 1984 20. Table 68Evapotranapization, in acre-ft, for the Bill Williams River, 1984 1983 1863 19Evapotranapization and consumptive use, in acre-ft, Parker Dam to Marker Dam, 1984 19721884.CU Table 39Evapotranapization and consumptive use, in acre-ft, Imperial Dam to Morelos Dam, 1984 11 17200084.CU Table 40Evapotranapization and consumptive use, in acre-ft, Hoover Dam to Morelos Dam, 1984 19720084.CU Table 40Evapotranapization and consumptive use, in acre-ft, Hoover Dam to Morelos Dam, 1984 19720084.CU Table 18Mater-use rates, in feet, along the lower Colorado River, 1984	0	Table 35Areas of each vegetation type by diverter, in acres, Farker Dam to imperial Dam, . I IM2M184.A	0
N T T T T T T T T T T T T T T T T T T T	_ c	Table 38 Areas of each vegetation type by diverter, in acres, Imperial Dam to Morelos Dam,	0
)	1	1
	•		0
	٥	_	0
	0	-	0
1		Table 6B.	•
	<u> </u>	•)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0	-	0
RAME I	٥	7	0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	٥	7	0
RATES84.TIT 1 RATES84.OUT Table 18Water	_		
RATES84.TIT 1 RATES84.OUT Table 18Water	o ī		0 1
1 RATES84.OUT Table 18Water	٥		0
	٥	1 RATES84.OUT	0
	0	Table to Maret	0
	0		0
)
	٥		0
	0		0
	٥		0
	٥		0
	0		0
	0		0
	<u> </u>		0
	0		0
	0		0
0	0		0
	0		0

K. Example of the title input data files for the output tables.

ATTACHMENT K K-1

0 0	0 0	0	0	0	o	0	0	0	0	o	-		0	0	0	C		0	0	٥	٥		0	0	0	_		0	0	0
Total	5.28		6.50	3.43	5.38			•			•			6.45	3.42	36	.93	6.43	5.36							•				
ů Ž	88		8	88	88			8	888	88	0			88	38	88	88	88	88	3	0	8	38	88	38	88	38			
	171		72	 22 22	22			7	88	 27				7.		22	88	0.2	7.7		23	9:	 	88	38	52.	121			
			.	۰0	m vo			•	• •	• •	•			•	• •	•	• •	• •	•	•		•	• •	•	٠.	•	• •			
	• •		*		ŭ.			•	• •	• •	•			•	• •	•	• •	• •	•	•		•	• •	•	٠.	•	• •			
Sep	. 50		.73	. 59	.50			.83		F. 69.	.5			5.	5.55	88	88	9.7	.63	ř.	8	5	30	88	38	7.	.25			
Aug	.58		.77	96.	.60			2.	688	. 32	.61			.76	86.	ė.	88	88	.75		59	.56	3,0	88	38	8.5	. 23			
Jul	.65		.87	88.	18.5			.72	283	1.03 18.03	.67			98.	. 8.	8.5	:8	0.8	8.5		83	.35	3,8	8,6	38	.95	. 4			
Jun	.60		8.	£ 5.	. 60			0.1	18	7.5	.62			96.	. . .	8,5	:8	8	7.5	9	76	8	: 8	8,6	38	.8.	. 58			
Мау	.57		.95	5.8 88.	52.			. 6.	5.50	52.	9.										6	35	28	335	3.8	8:	.57			
	74.8 38		. 99	909	0.0		£	99	96.5	25	‡ 1			9	97	88	5 6	S 09	20.5	2		133	200	96	0 0 0 0 0 0 0 0 0 0	89	A 00 # E7			
	ρį.			220	m z		7111	99	 		*		000								윮									
	111M						Print. I.	1	۰	 			DADE	٤.,	٥ م	00	0 04	~ @	-		ಗ್ಗ			٥.	4 40		2 00			
Pa .	' 44		ن .	0.4		1	•	٠	0.71	üü	7		•	'n.	<u> </u>	o, c	? =:			:	, "	:-:	??	•	: ?	Ġ.	? -:			
Jan	88		8.	88	88	•		8	9.1	88	8	`		8.	38	8.8	65	7.0	888	3	8	7	88	8:	13.	88				
8	ĄŢ						9	¥.					£	į		P.	į						2		13					
ion t	DAV.D TUM RSE		R. DAT	SE	RSE	!	0 404	ALFA.	NOT I	SE	RSE		T C	ALFA	TON	I LEI	ING	AT SE	MOI	KSE	IP. DAT	RUS	LET	SNO	J TK	SE	RSE			
getat	HOOV2 NED SPA		BILLW	COC	NED		0.00	ALF	2 H	MED	SPA		DADEO	ALF	56	PAL	SPR	WHE	MED	ZY.	PV2IN	i i	2 Z	MEL	WHE	DEN	SPA			
*		•	•	0	0	•	0	•	0	0			•						_						-0					
	eb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT - WILLOW-B.PPT - 00 .22 .41 .48 .72 .75 .81 .73 .62 .33 .21 .00 5.28 - 00 .18 .32 .38 .57 .60 .65 .58 .50 .26 .17 .00 4.21	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT - 00 .12 .41 .48 .72 .75 .81 .73 .62 .33 .21 .00 5.28 - 00 .18 .32 .38 .57 .60 .65 .58 .50 .26 .17 .00 4.21	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT .00 .22 .41 .48 .72 .75 .81 .73 .62 .33 .21 .00 5.28 .00 .18 .32 .38 .57 .60 .65 .58 .50 .26 .17 .00 4.21 - PARKER.PPT .00 .31 .56 .66 .95 .98 .87 .77 .73 .43 .24 .00 6.50	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT - 00 .22 .41 .48 .72 .75 .81 .73 .62 .33 .21 .00 5.28 - 00 .18 .32 .38 .57 .60 .65 .58 .50 .26 .17 .00 4.21 - PARKER.PPT - 00 .31 .56 .66 .95 .98 .87 .77 .73 .43 .24 .00 6.50 - 00 .00 .00 .05 .19 .43 .85 .99 .39 .37 .06 .00 3.43	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B. PPT - 00 - 22 - 41 - 48 - 72 - 75 - 81 - 73 - 62 - 33 - 21 - 00 5.28 - 00 - 18 - 32 - 38 - 57 - 60 - 65 - 58 - 50 - 26 - 17 - 00 4.21 - PARKER. PPT - 00 - 31 - 56 - 66 - 95 - 99 - 97 - 77 - 73 - 43 - 24 - 00 6.50 - 00 - 00 - 05 - 19 - 43 - 85 - 99 - 59 - 27 - 06 - 00 3.43 - 00 - 28 - 52 - 60 - 88 - 91 - 98 - 91 - 75 - 40 - 25 - 00 6.48 - 00 - 39 - 34 - 40 - 59 - 60 - 65 - 60 - 50 - 50 - 26 - 17 - 00 4.30	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT .00 .22 .41 .48 .72 .75 .81 .73 .62 .33 .21 .00 5.28 .00 .18 .32 .38 .57 .60 .65 .58 .50 .26 .17 .00 4.21 - PARKER.PPT .00 .31 .56 .66 .95 .98 .87 .77 .73 .43 .24 .00 6.50 .00 .00 .00 .05 .19 .43 .85 .99 .59 .27 .06 .00 3.43 .00 .24 .43 .50 .73 .75 .81 .75 .40 .25 .00 6.48 .00 .19 .34 .40 .59 .60 .65 .60 .50 .26 .17 .00 4.30	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT .00 .22 .41 .48 .72 .75 .81 .73 .62 .33 .21 .00 5.28 .00 .18 .32 .38 .57 .60 .65 .58 .50 .26 .17 .00 4.21 - PARKER.PPT .00 .31 .56 .66 .95 .98 .87 .77 .73 .43 .24 .00 6.50 .00 .00 .00 .05 .19 .43 .85 .99 .59 .27 .06 .00 3.43 .00 .24 .43 .50 .73 .75 .60 .88 .91 .98 .91 .75 .63 .33 .21 .00 5.38 .00 .19 .34 .40 .59 .60 .65 .60 .50 .26 .17 .00 4.30	Jan Peb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT -00 .22 .41 .48 .72 .75 .81 .73 .62 .33 .21 .00 5.28 -00 .18 .32 .38 .57 .60 .65 .58 .50 .26 .17 .00 4.21 - PARKER.PPT -00 .31 .56 .66 .95 .98 .87 .77 .73 .43 .24 .00 6.50 -00 .00 .00 .00 .05 .19 .43 .85 .99 .59 .27 .06 .00 3.43 -00 .24 .43 .50 .73 .75 .81 .75 .83 .21 .00 5.38 -00 .24 .43 .50 .73 .75 .81 .75 .60 .80 .34	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B. PPT - 00 - 22 - 41 - 48 - 72 - 75 - 81 - 73 - 62 - 33 - 21 - 00 5.28 - 00 - 18 - 32 - 38 - 57 - 60 - 65 - 58 - 50 - 26 - 17 - 00 4.21 - PARKER. PPT - 00 - 31 - 56 - 66 - 95 - 98 - 87 - 77 - 73 - 43 - 24 - 00 6.50 - 00 - 00 - 00 - 05 - 19 - 43 - 98 - 91 - 75 - 40 - 25 - 00 6.48 - 00 - 28 - 52 - 66 - 98 - 91 - 75 - 63 - 33 - 21 - 00 5.38 - 00 - 24 - 43 - 50 - 73 - 75 - 81 - 75 - 63 - 33 - 21 - 00 5.38 - 00 - 24 - 43 - 50 - 66 - 65 - 60 - 65 - 60 - 26 - 17 - 00 4.30 - BULLCITY. PPT - BULLCITY. PPT - BULLCITY. PPT - 86 - 97 - 100 - 72 - 70 - 82 - 44 - 14 - 00 6.32 - 14 - 27 - 75 - 86 - 30 - 00 - 00 - 00 - 00 - 232 - 14 - 27 - 75 - 86 - 30 - 00 - 00 - 00 - 00 - 232	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT - WILLOW-B.PT - WILLOW-B.PT - WILLOW-B.PT	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT - 00 -22 -41 -48 -72 -75 -81 -73 -62 -33 -21 -00 5.28 - 00 -18 -32 -38 .57 .60 .65 .58 .50 .26 .17 .00 4.21 - PARKER.PPT - 00 -31 .56 .66 .95 .98 .87 .77 .73 .43 .24 .00 6.50 - 00 .00 .00 .05 .19 .43 .85 .99 .59 .27 .06 .00 3.43 - 00 .24 .45 .50 .73 .75 .81 .75 .40 .25 .00 6.48 - 00 .24 .35 .75 .81 .75 .81 .75 .40 .25 .00 6.48 - 00 .24 .35 .75 .77 .77 .77 .47 .40 .25 .00 6.48 - 00 .24 .35 .90 .77 .77 .77 .40 .25 .00 6.48 - 00 .31 .56 .66 .97 .00 .72 .70 .82 .44 .14 .00 6.32 - 00 .31 .56 .66 .97 1.00 .72 .70 .82 .44 .14 .00 6.32 - 00 .31 .56 .66 .97 1.00 .72 .70 .92 .68 .28 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0	Jan Peb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT	Jan Peb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT 72 .75 .81 .73 .62 .33 .21 .00 5.28 .00 .18 .32 .41 .48 .72 .75 .81 .73 .62 .33 .21 .00 5.28 .00 .19 .34 .56 .66 .95 .98 .87 .77 .73 .43 .24 .00 6.50 .00 .00 .00 .00 .05 .19 .91 .95 .99 .75 .06 .00 3.43 .00 .19 .34 .40 .59 .60 .85 .99 .75 .63 .30 .21 .00 5.38 - BULLCITY.PPT 7 .00 .72 .70 .82 .44 .14 .00 6.32 .00 .01 .02 .03 .04 .04 .00 .00 .00 .00 .00 .00 .326 .00 .02 .03 .04 .04 .05 .09 .04 .04 .06 .00 .00 .00 .00 .00 .00 .00 .00 .00	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOM-B.PPT75 .81 .73 .62 .33 .21 .00 5.28 .00 .18 .32 .41 .48 .72 .75 .81 .77 .73 .43 .24 .00 6.50 .00 .31 .56 .66 .95 .98 .87 .77 .73 .43 .24 .00 6.50 .00 .00 .00 .05 .19 .43 .85 .99 .59 .59 .59 .34 .00 6.48 .00 .19 .34 .40 .59 .60 .65 .60 .30 .34 .30 - BULLCITY PPT00 .72 .70 .82 .44 .14 .00 6.32 .00 .10 .00 .00 .00 .00 .00 .00 .00 .00	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT - 75 -81 -73 -62 -33 -21 -00 5-28 - On -18 -32 -41 -48 -72 -75 -81 -73 -62 -33 -21 -00 5-28 - DANEER. PPT - 60 -65 -58 -58 -50 -26 -17 -00 4-21 - DANEER. PPT - 60 -65 -98 -97 -77 -73 -43 -24 -00 6-50 - On -19 -56 -66 -98 -91 -98 -97 -77 -73 -43 -24 -00 6-50 - BULLCITY. PPT - 75 -91 -96 -97 -97 -97 -97 -97 -97 -97 -97 -97 -97	Jan Peb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B-PPT	7an Peb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT	Jun Feb Max Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B. PPT 72 75 81 77 75 62 133 21 100 5.28 - DARZER PPT 72 75 81 77 77 77 73 43 24 00 6.50 - BALLCITY PT 75 81 77 77 77 77 77 73 43 24 00 6.50 - BULLCITY PT 75 81 77 77 77 77 77 77 77 77 77 77 77 77 77	Jan Peb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B-PPT	Jan Peb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B-PPT	Teah Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - MILLOOM PPT 7 77 77 73 43 21 00 5.28 - MARKER PPT 6 6 55 58 59 17 00 6.50 - BULLCITY PPT 7 175 175 175 175 175 175 175 175 175 1	Jan Peb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLLOGH B. PPT	Jan Peb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOW-B.PPT	Jan Peb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total. - WILLOW-B.PPT	Jan Peb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - MILLOM-B-PPT - 12	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - MILLON-B PT	Jan Peb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total. - WILLON-B-PPT 72 75 56 55 189 56 23 17 100 5.28 - WILLON-B-PPT 72 75 56 55 189 56 23 17 100 5.28 - WILLON-B-PPT 72 75 56 55 189 56 23 17 100 5.28 - WILLON-B-PPT 73 199 187 77 73 143 24 10 10 6.23 - WILLON-B-PPT 75 18 18 17 17 17 10 6.23 - WILLON-B-PPT 75 18 18 18 18 18 18 18 18 18 18 18 18 18	Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total - WILLOH-B. PPT - WILLOH-B. PT - WILLOH-B. PPT - WILLOH-B. PT - WILLOH-B. PPT - WILLOH-B. PT - WILLOH-B. PT - WILLOH-B.

L. Example of the output file of the calculated water-use rates for the vegetation types along the lower Colorado River by reach

ATTACHMENT L L-1

```
3.66
3.72
3.12
3.55
3.46
5.18
6.18
6.18
             8884888888
             12288822288
             24400001447
             53.38
64.000
64.000
64.000
             33.33
86.000
87.73
             41200200262
            5682208601351
                                                                                                                                                                                                                                                                                   -<sup>96</sup>0
             921.000 47.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00 88.00
    0400112244
             8468844688
```

L. Example of the output file of the calculated water-use rates for the vegetation types along the lower Colorado River by reach—Continued.

ATTACHMENT L L-2

°	0 0	\equiv	٥	٥	0		0	٥	٥	_	0	٥	٥	•	_	0	٥	0	0	0	٥	٥	0	0	۰	0	٥	0	٥	0	٥	٥
	TOTAL	433	3654	92225	1741	780	3401	615	2299 5641	906	1847	104161	4027	7053 128	7600	238792																
	SPARSE	2	296 0	5805	155	23	1045	27.	2030	8	32	1391	741	3937	2381	18556																
m, 1984	MEDIUM	6	305	5265	323	8	1114	75	403 1256	166	36	2541	808	75	4692	18535																
perial De	DENSE	7	301	4339	233	36	161	89	269 1168	432	103	2969	814	2322	527	14309																
each vegetation type by diverter, in acres, Parker Dam to Imperial Dam, 1984	EWHEAT	57	60	11698	286	47	58 88		184	77	156	20963	285	00	0	33883																
, Parker	SPRING LEWHEAT	0	ដ	1727	-0	25	20	0	0,0	0	27	3672	,	00	0	5513																
in acres	TMELONS	64	65	4128	₽ ∞	`#:	142	45	100	95	200	11972	296 296	00	0	17841																
diverter,	PALL LETTMELONS	26	#	4634	2 8	3 ~	0 4		85 9	~~	9 61	9493	159	00	•	14556																
type by	COTTON	٥	2077	25594	., c.	468	192	336	4 69	120	574	23505	518	00	0	54677																
egetation	CITRUS	15	95	1601	⊃ ₹	12	104	0	106	· ~ ·	225	5169	17	00	•	7468		238792	214956													
of each v	ALPALPA	265	430	27434					553 864	9	175	22486	92	00	0	53454		23	21													
Table 36Areas	DIVERTER		AZ CIBOLA ID	AZ CRIR	AZ CRIR MESA AZ CRIB SONTH PARM	AZ EHRENBERG FARM	AZ LOWER QUAIL MESA	CA BERNAL FARMS			CA PICACHO SRA			US CIBOLA NWR		TOTAL		Total vegetated area	Net vegetated area													
6	0 (0	0	0	_	່ົ	0	0	C	,	٥	0	0)	0	0	0	0	0	0	-	0		0	0	0	0	0	0	0	_

M. Example of the output file for the Parker Dam to Imperial Dam reach showing the area of each vegetation type by diverter.

ATTACHMENT M M-1

N. Example of the output file for the Bill Williams River below Alamo Dam showing evapotranspiration

ATTACHMENT N N-1

•	Table 40 Evapotre	Evapotranspiration and consumptive use,	급	acre-ft, Hoover Dam to Morelos Dam, 1	1984
	Diverter	Evapotranspiration	Percentage	Consumptive use	0
0	ARIZONA				
0	AZ ARKELIAN FARMS	1918	11.	2349	<u> </u>
٥		0 000	88	12221	0
٥		275	55	336	0
_	AZ CITY OF YUKA	0 6	00.	1106	Q
•	AZ CRIR	300291	17.77	367847	
٥	AZ CRIR MESA	421	.02	515	0
٥	AZ CRIR SOUTH FARM AZ EHRENBERG FARM	1747	97.	2140	0
_	AZ FIVE MILE ZONE	0 00116	9.6	0 00.13	(
•	AZ FYIR RES DIV	1019	90.	1248	
٥		0 000	8:	0	•
-0	NORTH GILA V	3830 21768	1.29	2665	0
_	SOUTH GILA V	13212	. 78	16184	
0	AZ STATE OF AZ AZ INTT B TD	49688	2.94	3954	0
٥		7986	12	4708	0
_	AZ YUMA MESA ID	92834	5.49 27	113718	•
,	AZ PHREATOPHYTES	313995	18.58	384634	
0 0	Totals for Arizona	1021722	60.46	1251570	0
0	CALIFORNIA				0
0					0
_					(
0		18393	.07	1495	0
٥		00	8.8	00	0
•	CLARK FARM	5747	. . .	7039	0
0	CA CRIR	6458 11918	32.	14599	0
_	FYIR BARD ID	18519	1.10	22685	
•	MOABI PARK NORTH LYN-DE	816 816	86.	666	0
0		00	8.8	00	•
۰	CA PV NESA	8987	. 53	5963	0
•	CA FVID CA SOUTH LYN-DE FARM	306200	18.12	375085 627	•
0	CA STATE OF CA	25725	1.52 8.57	31512 177433	•
•	Totals for California	545826	32.30	668615	0
					0
\overline{f}					

O. Example of the output file for the Hoover Dam to Morelos Dam reach showing evapotranspiration and consumptive use.

ATTACHMENT O O-1

WY PORT MCAVE IR WY STATE OF NY STATE NY ST	-	NEVADA				e
W PRIZATORNITES W PRIZATORNITES W PRIZATORNITES W PRIZATORNITES TOTALS for Nevada TO	0					0
NV PRIEALCHING The sis for Newada 1226 The sis for Newada The sis	- 0	AT WATCH TROP VN	1039	90	1272	O
Total for Newada 12260 .73 15017 FEDERAL LANDS FEDERAL LANDS US CIROLA NAR US CIROLA NAR US AND SAN 33521 2.10 45512 US LANDS NAR US LAN		NV STATE OF NV	2642	.16	3236	•
TOTALS FOR Newada 12260 .73 15017 TEDERAL LANDS US CIRCLA WRR 35521 2.10 45512 US CIRCLA WRR 31005 1.95 66010 US HAWASTU WRR 3177 2.18 1892 US CIRCLA WRR 31005 1.95 66010 US HAWASTU WRR 3177 2.18 1892 US CIRCLA WRR 3177 2.18 1892 US CIRCLA WRR 3177 2.19 1892 US CIRCLA WRR 3177 2.10 45512 US CIRCLA WRR 3177 2.19 1892 US CIRCLA WRR 3177 2.10 45512 US CIRCLA WRR		NV FRANCISCIES	6100	7.	60001	
TEDERAL LANDS US CHECKAL LANDS US HARRILL WAR US HARRILL WA	٥	Totals for Nevada	12260	.73	15017	0
US CIECLA NAR 35521 2.10 43512 US INVESTAL NAR 31305 1.55 4085 US INVESTAL NAR 31305 1.56 4085 US INVESTAL NAR 31305 1.56 4085 US INVESTAL NAR 31305 1.09975 6.51 134714 Feach Totals 1689783 100.00 2069334 Water-Budget Estimate 206993	0	BOTTON TO THE PROPERTY OF THE				٥
US CIROLA NPR 35521 2.10 43512 US HAVAGU WR 3177 2.26 46762 US IMPERIAL NPR 3177 2.26 46762 US LARE MEAD NRA 3178 .19 3892 US LARE MEAD NRA 109975 6.51 13474 Reach Totals 1689783 100.00 2069934 Neter-Budget Estimate 206993	0					0
US NAVASAN WAR 3303 2.10 44321 US NAVASAN WAR 33003 2.10 44321 US NAVASAN WAR 33003 2.10 44321 US LANGE AND MAL 3117 2.10 118 Reach Totals	۰			;	,	٥
USINGERAL WAR 3177 2.56 46755 USINGERAL WAR 1178 1.56 USINGE ARE WAY 19 178 1.57 19 1892 19 1.11 11 1.11 14 1.4 Reach Totals 1689783 100.00 2069934 Mater-Eudget Estimate 2069932	_	US CIBOLA NWR	35521	2.10	43512	-
US LAKE HEAD NRA 1178 .19 1852 US LAKE HEAD NRA 194 .10 115 TOTALS for Federal Lands 109975 6.51 134714 Reach Totals 1689783 100.00 2068934 Mater-Budget Estimate 2068932	0	US IMPERIAL NWR	38177	2.26	46765	•
Totals for Pederal Lands 109978 6.51 134714 Reach Totals 100.00 2069934 Mater-Budget Estimate 1689783 100.00 2069932	٥	US LAKE MEAD NRA	3178	55	3892	0
Reach Totals 100.00 2069934 Water-Budget Estimate 2069932	۰	US LUKE AFK Totals for Federal Lands	109975	.01 6.51	134714	٥
Water-Budget Estimate 100.00 2069932	0			;		0
Water-Budget Estimate 206932	_	Reach Totals	1689783	100.00	2069934	c
	,	Water-Budget Estimate			2069932	
	0					0
	0					0
	۰					٥
	٥					0
	0					٥
	•					٥
	-					0
	0					٥
	0					0
	•					٥
	٥					٥
	٥					٥
	•					ò
	0					٥
	•					٥
	•					0
	•					•

O. Example of the output file for the Hoover Dam to Morelos Dam reach showing evapotranspiration and consumptive use—Continued.

ATTACHMENT O 0-2

P. Example of the output file showing domestic use for each diverter within each reach and totals by State.

ATTACHMENT P

Q. Example of the output file showing the water-budget calculation results for each reach.